Câu hỏi:

27/06/2022 707

Cho hình chóp đều S.ABC có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 600. Tính độ dài đường cao SHcủa khối chóp.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi H là chân đường cao kẻ từ đỉnh S xuống mặt phẳng (ABC).

Vì S.ABC là hình chóp đều có SA = SB = SC nên suy ra H chính là tâm đường tròn ngoại tiếp tam giác ABC.

Gọi M là trung điểm của BC, ta có

\(\left\{ {\begin{array}{*{20}{c}}{BC \bot AM}\\{BC \bot SH}\end{array}} \right. \Rightarrow BC \bot (SAM) \Rightarrow BC \bot SM\)

Khi đó

\(\left\{ {\begin{array}{*{20}{c}}{(SBC) \cap (ABC) = BC}\\{(SBC) \supset SM \bot BC}\\{(ABC) \supset AM \bot BC}\end{array}} \right. \Rightarrow (\widehat {(SBC);(ABC)}) = (\widehat {SM;AM}) = \widehat {SMA} = {60^0}\)

Tam giác ABC đều cạnh a có \[AM = \frac{{a\sqrt 3 }}{2} \Rightarrow HM = \frac{{AM}}{3} = \frac{{a\sqrt 3 }}{6}.\]

Tam giác AHM vuông tại H, có\[SH = \tan {60^0}.\frac{{a\sqrt 3 }}{6} = \frac{a}{2}.\]

Vậy độ dài đường cao\[SH = \frac{a}{2}.\]

Cho hình chóp đều S.ABC có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 600. Tính độ dài đường cao SHcủa khối chóp.Gọi H là chân đường cao kẻ từ đỉnh S xuống mặt phẳng (ABC).Vì S.ABC là  (ảnh 1)

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB=BC=2a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC), \(SA = \sqrt 3 a\). Góc giữa hai mặt phẳng (SAB) và (SAC) bằng:

Xem đáp án » 13/07/2024 7,985

Câu 2:

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng aa. Gọi M là trung điểm SC. Tính góc \[\varphi \] giữa hai mặt phẳng (MBD) và  (ABCD).

Xem đáp án » 27/06/2022 4,284

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB=AC=a. Hình chiếu vuông góc HH của SS trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC và \(SH = \frac{{a\sqrt 6 }}{2}\). Gọi \[\varphi \] là góc giữa hai đường thẳng SB và AC. Mệnh đề nào sau đây đúng?

Xem đáp án » 27/06/2022 1,827

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA=x và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc 600.

Xem đáp án » 27/06/2022 1,753

Câu 5:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi E,F lần lượt là trung điểm của cạnh AB và AC. Góc giữa hai mặt phẳng (SEF) và (SBC) là

Xem đáp án » 27/06/2022 1,714

Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Gọi H là trung điểm AB. Biết rằng SH vuông góc với mặt phẳng (ABC) và AB=SH=a. Tính cosin của góc α tọa bởi hai mặt phẳng (SAB) và (SAC). 

Xem đáp án » 25/06/2022 1,418

Câu 7:

Cho hình hộp chữ nhật ABCD.A′B′C′D′ có đáy ABCD là hình vuông cạnh \(a\sqrt 2 \) cạnh bên AA′=a (minh họa như hình vẽ). Góc giữa hai mặt phẳng (A′BD) và (C′BD) bằng bao nhiêu độ?

Cho hình hộp chữ nhật ABCD.A′B′C′D′ có đáy ABCD là hình vuông cạnh  (ảnh 1)

Xem đáp án » 13/07/2024 1,051

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store