Câu hỏi:
28/06/2022 116Hàm số \[f\left( x \right) = 2\sin 2x - 3\] đạt cực tiểu tại:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có: \[f\left( x \right) = 2\sin 2x - 3\]
TXĐ: \[D = R.\]
\[f'\left( x \right) = 4\cos 2x,f'\left( x \right) = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2},k \in Z\]
\[f''\left( x \right) = - 8\sin 2x\]Ta có: \[f''\left( {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right) = - 8\sin \left( {\frac{\pi }{2} + k\pi } \right),k \in Z\]
Khi \[k = 2n\]thì\[\sin \left( {\frac{\pi }{2} + 2n\pi } \right) = \sin \frac{\pi }{2} = 1\] nên\[f''\left( {\frac{\pi }{4} + \frac{{2n\pi }}{2}} \right) = - 8 < 0\]
Khi\[k = 2n + 1\] thì\[\sin \left( {\frac{\pi }{2} + \left( {2n + 1} \right)\pi } \right) = \sin \frac{{3\pi }}{2} = - 1\]nên\[f''\left( {\frac{\pi }{4} + \frac{{\left( {2n + 1} \right)\pi }}{2}} \right) = 8 > 0\]
Vậy hàm số đạt cực tiểu tại\[x = \frac{\pi }{4} + \frac{{\left( {2k + 1} \right)\pi }}{2}\]Đáp án cần chọn là: D
</>
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + d\] (với \[a,b,c,d \in \mathbb{R}\;\] và \[a \ne 0\]) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \[g(x) = f( - 2{x^2} + 4x)\;\] là
Câu 2:
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \[y = {x^3} - 3{x^2} + 1\] là:
Câu 3:
Đồ thị hàm số \[y = {x^3} - 3x + 2\] có 2 điểm cực trị A,B. Diện tích tam giác OAB với O(0;0) là gốc tọa độ bằng:
Câu 4:
Cho hàm số \[y = f\left( x \right)\;\]có đạo hàm \[f\prime \left( x \right) = {x^2}({x^2} - 1).\] Điểm cực tiểu của hàm số \[y = f\left( x \right)\;\] là:
Câu 5:
Đồ thị hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + n\] có điểm cực tiểu là A(1;3). Giá trị của m+n bằng:
Câu 6:
Cho hàm số bậc hai y=f(x) có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số m để hàm số g(x) không có cực trị.
Câu 7:
Cho hàm số y=f(x)) có bảng biến thiên trên khoảng (0;2) như sau:
Khẳng định nào sau đây là khẳng định đúng:
về câu hỏi!