Câu hỏi:
28/06/2022 510Cho hàm số f(x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số \[f({x^2} - 2x)\;\] là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt \[g\left( x \right) = f\left( {{x^2} - 2x} \right)\] ta có\[g'\left( x \right) = \left( {2x - 2} \right)f'\left( {{x^2} - 2x} \right)\]
\[g\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{f\prime ({x^2} - 2x) = 0}\end{array}} \right.\]
Dựa vào BBT ta thấy \[f\prime ({x^2} - 2x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x^2} - 2x = 0}\\{{x^2} - 2x = 3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\\{x = - 1}\\{x = 3}\end{array}} \right.\]
⇒ Phương trình \[g'\left( x \right) = 0\] có 5 nghiệm đơn\[x = 0,\,\,x = 2,\,\,x = 3,x = - 1,x = 1\]Vậy hàm số đã cho có 5 điểm cực trị.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \[y = {x^3} - 3{x^2} + 1\] là:
Câu 2:
Cho hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + d\] (với \[a,b,c,d \in \mathbb{R}\;\] và \[a \ne 0\]) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \[g(x) = f( - 2{x^2} + 4x)\;\] là
Câu 3:
Đồ thị hàm số \[y = {x^3} - 3x + 2\] có 2 điểm cực trị A,B. Diện tích tam giác OAB với O(0;0) là gốc tọa độ bằng:
Câu 4:
Cho hàm số \[y = f\left( x \right)\;\]có đạo hàm \[f\prime \left( x \right) = {x^2}({x^2} - 1).\] Điểm cực tiểu của hàm số \[y = f\left( x \right)\;\] là:
Câu 5:
Đồ thị hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + n\] có điểm cực tiểu là A(1;3). Giá trị của m+n bằng:
Câu 6:
Cho hàm số bậc hai y=f(x) có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số m để hàm số g(x) không có cực trị.
Câu 7:
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới, chọn khẳng định sai:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!