Câu hỏi:

28/06/2022 151

Số điểm cực trị của hàm số \[y = \left| {{x^2} - 3x + 2} \right|\] là:

Đáp án chính xác
Câu hỏi trong đề:   Cực trị của hàm số !!

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số\[y = {x^2} - 3x + 2\] ta có:\[y' = 2x - 3 \Rightarrow y' = 0 \Leftrightarrow x = \frac{3}{2}\]

⇒ Hàm số\[y = {x^2} - 3x + 2\]  có 1 cực trị.

Xét phương trình hoành độ giao điểm của đồ thị hàm số\[y = {x^2} - 3x + 2\]  với trục hoành ta có:

\[{x^2} - 3x + 2 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 2}\end{array}} \right.\]

⇒ Đồ thị hàm số\[y = {x^2} - 3x + 2\] cắt trục hoành tại 2 điểm phân biệt.

⇒ Số điểm cực trị của hàm số \[y = \left| {{x^2} - 3x + 2} \right|\] là:\[S = 1 + 2 = 3\] cực trị.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + d\] (với \[a,b,c,d \in \mathbb{R}\;\] và \[a \ne 0\]) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \[g(x) = f( - 2{x^2} + 4x)\;\] là

Cho hàm số f ( x ) = a x^3 + b x^2 + c x + d   (với  a , b , c , d ∈ R  và  a ≠ 0 ) có đồ thị như hình vẽ. Số điểm cực trị của hàm số  g ( x ) = f ( − 2 x^2 + 4 x )  là (ảnh 1)

Xem đáp án » 28/06/2022 12,666

Câu 2:

Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \[y = {x^3} - 3{x^2} + 1\] là:

Xem đáp án » 28/06/2022 11,693

Câu 3:

Đồ thị hàm số \[y = {x^3} - 3x + 2\] có 2 điểm cực trị A,B. Diện tích tam giác OAB với O(0;0) là gốc tọa độ bằng:

Xem đáp án » 28/06/2022 6,390

Câu 4:

Cho hàm số \[y = f\left( x \right)\;\]có đạo hàm \[f\prime \left( x \right) = {x^2}({x^2} - 1).\] Điểm cực tiểu của hàm số \[y = f\left( x \right)\;\] là:

Xem đáp án » 11/07/2024 4,932

Câu 5:

Đồ thị hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + n\] có điểm cực tiểu là A(1;3). Giá trị của m+n bằng:

Xem đáp án » 11/07/2024 2,952

Câu 6:

Cho hàm số bậc hai y=f(x) có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số m để hàm số g(x) không có cực trị.                     

Cho hàm số bậc hai y=f(x) có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm  (ảnh 1)

Xem đáp án » 28/06/2022 2,329

Câu 7:

Cho hàm số y=f(x)) có bảng biến thiên trên khoảng (0;2) như sau:

Khẳng định nào sau đây là khẳng định đúng:

Xem đáp án » 28/06/2022 1,352

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn