Câu hỏi:
28/06/2022 275Cho hàm số \[y = \frac{1}{3}{x^3} - m{x^2} + (2m - 4)x - 3.\]. Tìm mm để hàm số có các điểm cực đại, cực tiểu \[{x_1};{x_2}\;\] thỏa mãn: \[x_1^2 + x_2^2 = {x_1}.{x_2} + 10\]
Quảng cáo
Trả lời:
\[y' = {x^2} - 2mx + 2m - 4\]
Để hàm số có cực đại cực tiểu \[ \Leftrightarrow {\rm{\Delta '}} > 0,\forall m \Leftrightarrow {m^2} - 2m + 4 > 0,\forall m\]
Khi đó phương trình \[y' = 0\] có hai nghiệm \[{x_1},{x_2}\] thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - \frac{b}{a} = 2m}\\{{x_1}{x_2} = \frac{c}{a} = 2m - 4}\end{array}} \right.\)
Ta có:
\[x_1^2 + x_2^2 = {x_1}.{x_2} + 10\]
\[ \Leftrightarrow {({x_1} + {x_2})^2} - 2{x_1}{x_2} - {x_1}{x_2} - 10 = 0\]
\[ \Leftrightarrow {({x_1} + {x_2})^2} - 3{x_1}{x_2} - 10 = 0\]
\[ \Leftrightarrow {(2m)^2} - 3.(2m - 4) - 10 = 0\]
\[ \Leftrightarrow 4{m^2} - 6m + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 1}\\{m = \frac{1}{2}}\end{array}} \right.\]
Đáp án cần chọn là: C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Để đồ thị hàm số\[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành thì phương trình\[m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\,\,\left( * \right)\] phải có 3 nghiệm phân biệt.
Ta có:
\[\begin{array}{l}m{x^3} - (2m - 1){x^2} + 2mx - m - 1 = 0\\ \Leftrightarrow (x - 1)[m{x^2} - (m - 1)x + m + 1] = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{m{x^2} - (m - 1)x + m + 1 = 0( * * )}\end{array}} \right.\end{array}\]
Để (*) có ba nghiệm phân biệt thì (**) phải có 2 nghiệm phân biệt khác 1.
\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m.1 - (m - 1).1 + m + 1 \ne 0}\\{\Delta = {{(m - 1)}^2} - 4m(m + 1) > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m - m + 1 + m + 1 \ne 0}\\{{m^2} - 2m + 1 - 4{m^2} - 4m > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{ - 3{m^2} - 6m + 1 > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{\frac{{ - 3 - 2\sqrt 3 }}{3} < m < \frac{{ - 3 + 2\sqrt 3 }}{3}}\end{array}} \right.\end{array}\)
Mà\[m \in \mathbb{Z} \Rightarrow m = - 1\]
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: C
Lời giải
Bước 1:
Số điểm cực trị của hàm số\[y = f\left( {\left| x \right|} \right)\] là \[2m + 1\] trong đó m là số điềm cực trị dương của hàm số\[y = f\left( x \right)\]
Do đó để hàm số\[y = f\left( {\left| x \right|} \right)\] có đúng 3 điểm cực trị thì m=1⇒ hàm số\[y = f\left( x \right)\] phải có 1 điểm cực trị dương (*).
Bước 2:
Ta có:\[f'\left( x \right) = {x^2} + 2mx + {m^2} - 4\]
Xét\[f'\left( x \right) = 0\] có\[{\rm{\Delta '}} = {m^2} - {m^2} + 4 > 0\,\,\forall m\] nên\[f'\left( x \right) = 0\] có 2 nghiệm phân biệt
\(\left[ {\begin{array}{*{20}{c}}{{x_1} = - m + 2}\\{{x_2} = - m - 2}\end{array}} \right.\)
Bước 3:
\[\left( * \right) \Rightarrow - m - 2 \le 0 < - m + 2 \Leftrightarrow - 2 \le m < 2\]
Mà \[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0;1} \right\}\]
Vậy có 4 giá trị của m thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.