Bài toán cực trị có tham số đối với một số hàm số cơ bản

  • 628 lượt thi

  • 26 câu hỏi

  • 30 phút

Câu 1:

Tìm tất cả các giá trị của m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + x - 1\]  có cực đại và cực tiểu.

Xem đáp án

TXĐ: \[D = R\]

TH1:\[m = 0 \to y = x - 1.\]Hàm số không có cực trị.

TH2: \[m \ne 0\]

Ta có: \[y = \frac{{m{x^3}}}{3} - m{x^2} + x - 1 \Rightarrow y' = m{x^2} - 2mx + 1.\]Để hàm số cho có cực đại, cực tiểu thì phương trình \[y' = 0\] phải có 2 nghiệm phân biệt

\[ \Rightarrow \Delta \prime = {m^2} - m > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m < 0}\\{m > 1}\end{array}} \right.\]</>

Đáp án cần chọn là: B


Câu 2:

Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?

Xem đáp án

\[\begin{array}{l}y = - {x^4} + 2m{x^2} \Rightarrow y' = - 4{x^3} + 4mx = - 4x\left( {{x^2} - m} \right)\\ \Rightarrow y\prime = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{{x^2} = m}\end{array}} \right.\end{array}\]

Để hàm số có ba điểm cực trị thì phương trình \[y\prime = 0\;\] có ba nghiệm phân biệt hay phương trình \[{x^2} = m\;\] có hai nghiệm phân biệt \[ \ne 0\;\]hay \[m > 0\]

Đáp án cần chọn là: C


Câu 3:

Cho hàm số \[y = 2{x^4} - \left( {m + 1} \right){x^2} - 2.\]. Tất cả các giá trị của m để hàm số có 1 điểm cực trị là:

Xem đáp án

\[y' = 8{x^3} - 2\left( {m + 1} \right)x = 2x\left[ {4{x^2} - \left( {m + 1} \right)} \right] \Rightarrow y\prime = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{4{x^2} = m + 1\;(1)}\end{array}} \right.\]

Ta có yêu cầu bài toán để hàm số có một điểm cực trị \[ \Leftrightarrow y' = 0\]có 1 nghiệm duy nhất ⇔(1) có 1 nghiệm x=0 hoặc (1) vô nghiệm 

Đáp án cần chọn là: D


Câu 4:

Tìm tất cả các giá trị của m để hàm số \[y = - \frac{1}{3}{x^3} + \frac{{m{x^2}}}{3} + 4\;\] đạt cực đại tại x=2?

Xem đáp án

TXĐ \[D = \mathbb{R}\]

\[y' = - {x^2} + \frac{2}{3}mx \Rightarrow y'' = - 2x + \frac{2}{3}m\]Hàm số đã cho đạt cực đại tại x=2

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y\prime (2) = 0}\\{y\prime \prime (2) < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - {2^2} + \frac{2}{3}m.2 = 0}\\{ - 2.2 + \frac{2}{3}m. < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 4 + \frac{4}{3}m = 0}\\{ - 4 + \frac{2}{3}m < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = 3}\\{m < 6}\end{array}} \right. \Leftrightarrow m = 3\)

Đáp án cần chọn là: C


Câu 5:

Tìm tất cả các giá trị của tham số m để hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + 2\;\] đạt cực tiểu tại x=1.

Xem đáp án

TXĐ: \[D = R\]

Ta có:\[y' = 3{x^2} - 4mx + {m^2} \Rightarrow y'' = 6x - 4m\]

Để x=1 là điểm cực tiểu của hàm số  thì:\(\left\{ {\begin{array}{*{20}{c}}{y\prime (1) = 0}\\{y\prime \prime (1) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{m^2} - 4m + 3 = 0}\\{6 - 4m > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = 1;m = 3}\\{m < \frac{3}{2}}\end{array}} \right. \Leftrightarrow m = 1.\)

Đáp án cần chọn là: D


Các bài thi hot trong chương:

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận