Câu hỏi:
28/06/2022 117Cho hàm số \[y = 2{x^3} + m{x^2} - 12x - 13\] với m là tham số thực. Tìm giá trị của mm để đồ thị hàm số có hai điểm cực trị thỏa mãn khoảng cách từ chúng đến trục tung bằng nhau.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có\[y' = 6{x^2} + 2mx - 12.\]
Do\[{\rm{\Delta '}} = {m^2} + 72 > 0,\forall m \in \mathbb{R}\]nên hàm số luôn có hai điểm cực trị\[{x_1},{x_2}\]với\[{x_1},{x_2}\]là hai nghiệm của phương trình \[y' = 0\].
Theo định lí Viet, ta có \[{x_1} + {x_2} = - \frac{m}{3}.\]
Gọi\[A\left( {{x_1};{y_1}} \right)\] và \[B\left( {{x_2};{y_2}} \right)\] là hai điểm cực trị của đồ thị hàm số.
Yêu cầu bài toán \[ \Leftrightarrow \left| {{x_1}} \right| = \left| {{x_2}} \right| \Leftrightarrow {x_1} = - {x_2}\] (do\[{x_1} \ne {x_2}\])
\[ \Leftrightarrow {x_1} + {x_2} = 0 \Leftrightarrow - \frac{m}{3} = 0 \Leftrightarrow m = 0.\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 4} \right)x + 1\]. Có bao nhiêu giá trị nguyên của tham số mm để hàm số \[y = f(|x|)\;\] có đúng 3 điểm cực trị?
Câu 2:
Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.
Câu 3:
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \[y = \mid 3{x^4} - 4{x^3} - 12{x^2} + m\mid \;\] có 5 điểm cực trị?
Câu 4:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị.
Câu 5:
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành.
Câu 6:
Hãy lập phương trình đường thẳng (d) đi qua các điểm cực đại và cực tiểu của đồ thị hàm số \[y = {x^3} + 3m{x^2} - 3x\]
Câu 7:
Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?
về câu hỏi!