Câu hỏi:

28/06/2022 465 Lưu

Gọi S là tập hợp tất cả các giá trị thực của tham số mm để đồ thị hàm số \[y = \frac{{{x^2} + mx + 2m}}{{x + 1}}\] có hai điểm cực trị A,B và tam giác OAB vuông tại O. Tổng tất cả các phần tử của S là:

A.9.

B.1.

C.4.

D.5.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

ĐKXĐ: \[D = \mathbb{R} \setminus \left\{ { - 1} \right\}\]

Ta có: \[y = \frac{{{x^2} + mx + 2m}}{{x + 1}} = x + m - 1 + \frac{{m + 1}}{{x + 1}}\]

\[ \Rightarrow y' = 1 - \frac{{m + 1}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{{x^2} + 2x - m}}{{{{\left( {x + 1} \right)}^2}}}\]

Để hàm số đã cho có 2 cực trị thì phương trình \[y' = 0\] phải có 2 nghiệm phân biệt khác −1\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \prime = 1 + m > 0}\\{1 - 2 - m \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > - 1}\\{m \ne - 1}\end{array}} \right. \Leftrightarrow m > - 1\)

Khi đó, giả sử \[{x_1},\,\,{x_2}\] là nghiệm phân biệt của phương trình \[y' = 0\], áp dụng định lí Vi-ét ta có\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - 2}\\{{x_1}.{x_2} = - m}\end{array}} \right.\)

Đặt\[A\left( {{x_1};{x_1} + m - 1 + \frac{{m + 1}}{{{x_1} + 1}}} \right),\,\,B\left( {{x_2};{x_2} + m - 1 + \frac{{m + 1}}{{{x_2} + 1}}} \right)\] là hai điểm cực trị của hàm số.

Để tam giác OAB vuông tại O thì \[\overrightarrow {OA} .\overrightarrow {OB} = 0\]

\[\begin{array}{l} \Leftrightarrow {x_1}.{x_2} + ({x_1} + m - 1 + \frac{{m + 1}}{{{x_1} + 1}})({x_2} + m - 1 + \frac{{m + 1}}{{{x_2} + 1}}) = 0\\ \Leftrightarrow 2{x_1}.{x_2} + (m - 1)({x_1} + {x_2}) + (m + 1)(\frac{{{x_1}}}{{{x_2} + 1}} + \frac{{{x_2}}}{{{x_1} + 1}})\\ + {(m - 1)^2} + ({m^2} - 1)(\frac{1}{{{x_1} + 1}} + \frac{1}{{{x_2} + 1}}) + \frac{{{{(m + 1)}^2}}}{{({x_1} + 1)({x_2} + 1)}} = 0\\ \Leftrightarrow 2{x_1}.{x_2} + (m - 1)({x_1} + {x_2}) + (m + 1)\frac{{x_1^2 + x_2^2 + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\ + {(m - 1)^2} + ({m^2} - 1)\frac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \frac{{{{(m + 1)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\{x_1}.{x_2} + (m - 1)({x_1} + {x_2}) + (m + 1)\frac{{{{({x_1} + {x_2})}^2} - 2{x_1}{x_2} + {x_1} + x}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\ + {(m - 1)^2} + ({m^2} - 1)\frac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \frac{{{{(m + 1)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\ \Leftrightarrow - 2m - 2(m - 1) + (m + 1).\frac{{2 + 2m}}{{ - m - 1}} + {(m - 1)^2} + \frac{{{{(m + 1)}^2}}}{{ - m - 1}} = 0\\ \Leftrightarrow - 2m - 2m + 2 - 2 - 2m + {m^2} - 2m + 1 - m - 1 = 0\\ \Leftrightarrow {m^2} - 9m = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = 9}\end{array}} \right.\left( {tm} \right)\end{array}\]

\[ \Rightarrow S = \left\{ {0;9} \right\}\]

Vậy tổng tất cả các phần tử của S là 9.

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để đồ thị hàm số\[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành thì phương trình\[m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\,\,\left( * \right)\] phải có 3 nghiệm phân biệt.

Ta có:

\[\begin{array}{l}m{x^3} - (2m - 1){x^2} + 2mx - m - 1 = 0\\ \Leftrightarrow (x - 1)[m{x^2} - (m - 1)x + m + 1] = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{m{x^2} - (m - 1)x + m + 1 = 0( * * )}\end{array}} \right.\end{array}\]

Để (*) có ba nghiệm phân biệt thì (**) phải có 2 nghiệm phân biệt khác 1.

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m.1 - (m - 1).1 + m + 1 \ne 0}\\{\Delta = {{(m - 1)}^2} - 4m(m + 1) > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m - m + 1 + m + 1 \ne 0}\\{{m^2} - 2m + 1 - 4{m^2} - 4m > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{ - 3{m^2} - 6m + 1 > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{\frac{{ - 3 - 2\sqrt 3 }}{3} < m < \frac{{ - 3 + 2\sqrt 3 }}{3}}\end{array}} \right.\end{array}\)

Mà\[m \in \mathbb{Z} \Rightarrow m = - 1\]

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: C

Lời giải

Xét hàm số \[f\left( x \right) = 3{x^4} - 4{x^3} - 12{x^2}\] ta có

\[\begin{array}{l}f\prime (x) = 12{x^3} - 12{x^2} - 24x\\f\prime (x) = 0 \Leftrightarrow 12{x^3} - 12{x^2} - 24x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 1}\\{x = 2}\end{array}} \right.\end{array}\]

BBT:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số  (ảnh 1)

Ta có đồ thị \[y = f\left( x \right)\,\,\left( C \right)\] như sau:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số  (ảnh 2)

Để\[y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\] có 5 điểm cực trị thì:

TH1: (C) cắt đường thẳng y=−m tại 2 điểm phân biệt khác cực trị

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - m > 0}\\{ - 32 < - m < - 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m < 0}\\{5 < m < 32}\end{array}} \right.\)

Mà\[m \in {\mathbb{Z}^ + }\, \Rightarrow m \in \left\{ {6;7;...;31} \right\}\] 26 giá trị.

TH2: (C) cắt đường thẳng y=−m tại 3 điểm phân biệt, trong đó có 1 cực trị

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - m = 0}\\{ - m = - 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0(L)}\\{m = 5(TM)}\end{array}} \right.\)

Vậy, có tất cả 27 giá trị của m thỏa mãn.

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.m=−4                     

B.m=−1                     

C.m=1                                 

D.m=3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\[y = mx + 3m - 1\]

B. \[y = - 2\left( {{m^2} + 1} \right)x + m\]

C. \[y = \left( {2{m^3} - 2} \right)x\]

D. \[y = - 2x + 2m\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP