Câu hỏi:
28/06/2022 226Gọi S là tập hợp tất cả các giá trị thực của tham số mm để đồ thị hàm số \[y = \frac{{{x^2} + mx + 2m}}{{x + 1}}\] có hai điểm cực trị A,B và tam giác OAB vuông tại O. Tổng tất cả các phần tử của S là:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
ĐKXĐ: \[D = \mathbb{R} \setminus \left\{ { - 1} \right\}\]
Ta có: \[y = \frac{{{x^2} + mx + 2m}}{{x + 1}} = x + m - 1 + \frac{{m + 1}}{{x + 1}}\]
\[ \Rightarrow y' = 1 - \frac{{m + 1}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{{x^2} + 2x - m}}{{{{\left( {x + 1} \right)}^2}}}\]
Để hàm số đã cho có 2 cực trị thì phương trình \[y' = 0\] phải có 2 nghiệm phân biệt khác −1\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \prime = 1 + m > 0}\\{1 - 2 - m \ne 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > - 1}\\{m \ne - 1}\end{array}} \right. \Leftrightarrow m > - 1\)
Khi đó, giả sử \[{x_1},\,\,{x_2}\] là nghiệm phân biệt của phương trình \[y' = 0\], áp dụng định lí Vi-ét ta có\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - 2}\\{{x_1}.{x_2} = - m}\end{array}} \right.\)
Đặt\[A\left( {{x_1};{x_1} + m - 1 + \frac{{m + 1}}{{{x_1} + 1}}} \right),\,\,B\left( {{x_2};{x_2} + m - 1 + \frac{{m + 1}}{{{x_2} + 1}}} \right)\] là hai điểm cực trị của hàm số.
Để tam giác OAB vuông tại O thì \[\overrightarrow {OA} .\overrightarrow {OB} = 0\]
\[\begin{array}{l} \Leftrightarrow {x_1}.{x_2} + ({x_1} + m - 1 + \frac{{m + 1}}{{{x_1} + 1}})({x_2} + m - 1 + \frac{{m + 1}}{{{x_2} + 1}}) = 0\\ \Leftrightarrow 2{x_1}.{x_2} + (m - 1)({x_1} + {x_2}) + (m + 1)(\frac{{{x_1}}}{{{x_2} + 1}} + \frac{{{x_2}}}{{{x_1} + 1}})\\ + {(m - 1)^2} + ({m^2} - 1)(\frac{1}{{{x_1} + 1}} + \frac{1}{{{x_2} + 1}}) + \frac{{{{(m + 1)}^2}}}{{({x_1} + 1)({x_2} + 1)}} = 0\\ \Leftrightarrow 2{x_1}.{x_2} + (m - 1)({x_1} + {x_2}) + (m + 1)\frac{{x_1^2 + x_2^2 + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\ + {(m - 1)^2} + ({m^2} - 1)\frac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \frac{{{{(m + 1)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\{x_1}.{x_2} + (m - 1)({x_1} + {x_2}) + (m + 1)\frac{{{{({x_1} + {x_2})}^2} - 2{x_1}{x_2} + {x_1} + x}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\ + {(m - 1)^2} + ({m^2} - 1)\frac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \frac{{{{(m + 1)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\ \Leftrightarrow - 2m - 2(m - 1) + (m + 1).\frac{{2 + 2m}}{{ - m - 1}} + {(m - 1)^2} + \frac{{{{(m + 1)}^2}}}{{ - m - 1}} = 0\\ \Leftrightarrow - 2m - 2m + 2 - 2 - 2m + {m^2} - 2m + 1 - m - 1 = 0\\ \Leftrightarrow {m^2} - 9m = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = 9}\end{array}} \right.\left( {tm} \right)\end{array}\]
\[ \Rightarrow S = \left\{ {0;9} \right\}\]
Vậy tổng tất cả các phần tử của S là 9.
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 4} \right)x + 1\]. Có bao nhiêu giá trị nguyên của tham số mm để hàm số \[y = f(|x|)\;\] có đúng 3 điểm cực trị?
Câu 2:
Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.
Câu 3:
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \[y = \mid 3{x^4} - 4{x^3} - 12{x^2} + m\mid \;\] có 5 điểm cực trị?
Câu 4:
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành.
Câu 5:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị.
Câu 6:
Hãy lập phương trình đường thẳng (d) đi qua các điểm cực đại và cực tiểu của đồ thị hàm số \[y = {x^3} + 3m{x^2} - 3x\]
Câu 7:
Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
về câu hỏi!