Câu hỏi:
28/06/2022 118Cho hàm số \[y = {x^4} + 2\left( {1 - {m^2}} \right){x^2} + m + 1.\]. Tất cả các giá trị của mm để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có diện tích bằng \(4\sqrt 2 \)là
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
\[\begin{array}{l}y\prime = 4{x^3} + 4(1 - {m^2})x\\y\prime = 0 \Leftrightarrow 4{x^3} + 4(1 - {m^2})x = 0 \Leftrightarrow 4x({x^2} + 1 - {m^2}) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{{x^2} = {m^2} - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \pm \sqrt {{m^2} - 1} }\end{array}} \right.\end{array}\]
Điều kiện để hàm số có 3 cực trị:\[{m^2} - 1 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 1}\\{m < - 1}\end{array}} \right.\]
\[\begin{array}{*{20}{l}}{x = 0 \Rightarrow A\left( {0;m + 1} \right)}\\{x = - \sqrt {{m^2} - 1} \Rightarrow y = {{\left( { - \sqrt {{m^2} - 1} } \right)}^4} + 2\left( {1 - {m^2}} \right){{\left( { - \sqrt {{m^2} - 1} } \right)}^2} + m + 1}\\{ \Rightarrow y = {{\left( {{m^2} - 1} \right)}^2} - 2{{\left( {{m^2} - 1} \right)}^2} + m + 1 = - {{\left( {{m^2} - 1} \right)}^2} + m + 1}\\{ \Rightarrow B\left( { - \sqrt {{m^2} - 1} ; - {{\left( {{m^2} - 1} \right)}^2} + m + 1} \right)}\\{x = \sqrt {{m^2} - 1} \Rightarrow C\left( {\sqrt {{m^2} - 1} ; - {{\left( {{m^2} - 1} \right)}^2} + m + 1} \right)}\end{array}\]
\[\begin{array}{*{20}{l}}{{S_{ABC}} = 4\sqrt 2 \Leftrightarrow \frac{1}{2}AH.BC = 4\sqrt 2 }\\{ \Leftrightarrow \left| {{y_A} - {y_C}} \right|.\left| {HC} \right| = 4\sqrt 2 }\\{ \Leftrightarrow \left| {{y_A} - {y_C}} \right|.\left| {{x_C}} \right| = 4\sqrt 2 }\\{ \Leftrightarrow \left| {m + 1 + {{\left( {{m^2} - 1} \right)}^2} - m - 1} \right|.\sqrt {{m^2} - 1} = 4\sqrt 2 }\\{ \Leftrightarrow {{\left( {{m^2} - 1} \right)}^2}.\sqrt {{m^2} - 1} = 4\sqrt 2 }\\{ \Leftrightarrow {{\left( {{m^2} - 1} \right)}^5} = 32 \Leftrightarrow {m^2} - 1 = 2 \Leftrightarrow {m^2} = 3 \Leftrightarrow m = \pm \sqrt 3 }\end{array}\]
\[m = \pm \sqrt 3 \] thỏa mãn điều kiện\(\left[ {\begin{array}{*{20}{c}}{m > 1}\\{m < - 1}\end{array}} \right.\)
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 4} \right)x + 1\]. Có bao nhiêu giá trị nguyên của tham số mm để hàm số \[y = f(|x|)\;\] có đúng 3 điểm cực trị?
Câu 2:
Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.
Câu 3:
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \[y = \mid 3{x^4} - 4{x^3} - 12{x^2} + m\mid \;\] có 5 điểm cực trị?
Câu 4:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị.
Câu 5:
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành.
Câu 6:
Hãy lập phương trình đường thẳng (d) đi qua các điểm cực đại và cực tiểu của đồ thị hàm số \[y = {x^3} + 3m{x^2} - 3x\]
Câu 7:
Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?
về câu hỏi!