Câu hỏi:

28/06/2022 222

Cho hàm số \[y = {x^4} + 2\left( {1 - {m^2}} \right){x^2} + m + 1.\]. Tất cả các giá trị của mm để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có diện tích bằng \(4\sqrt 2 \)là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\begin{array}{l}y\prime = 4{x^3} + 4(1 - {m^2})x\\y\prime = 0 \Leftrightarrow 4{x^3} + 4(1 - {m^2})x = 0 \Leftrightarrow 4x({x^2} + 1 - {m^2}) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{{x^2} = {m^2} - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \pm \sqrt {{m^2} - 1} }\end{array}} \right.\end{array}\]

Điều kiện để hàm số có 3 cực trị:\[{m^2} - 1 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 1}\\{m < - 1}\end{array}} \right.\]

\[\begin{array}{*{20}{l}}{x = 0 \Rightarrow A\left( {0;m + 1} \right)}\\{x = - \sqrt {{m^2} - 1} \Rightarrow y = {{\left( { - \sqrt {{m^2} - 1} } \right)}^4} + 2\left( {1 - {m^2}} \right){{\left( { - \sqrt {{m^2} - 1} } \right)}^2} + m + 1}\\{ \Rightarrow y = {{\left( {{m^2} - 1} \right)}^2} - 2{{\left( {{m^2} - 1} \right)}^2} + m + 1 = - {{\left( {{m^2} - 1} \right)}^2} + m + 1}\\{ \Rightarrow B\left( { - \sqrt {{m^2} - 1} ; - {{\left( {{m^2} - 1} \right)}^2} + m + 1} \right)}\\{x = \sqrt {{m^2} - 1} \Rightarrow C\left( {\sqrt {{m^2} - 1} ; - {{\left( {{m^2} - 1} \right)}^2} + m + 1} \right)}\end{array}\]

Cho hàm số y = x^4 + 2 ( 1 − m^2 ) x^2 + m + 1.  . Tất cả các giá trị của mm để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có diện tích bằng  4 căn bậc hai của 2 là (ảnh 1)

\[\begin{array}{*{20}{l}}{{S_{ABC}} = 4\sqrt 2 \Leftrightarrow \frac{1}{2}AH.BC = 4\sqrt 2 }\\{ \Leftrightarrow \left| {{y_A} - {y_C}} \right|.\left| {HC} \right| = 4\sqrt 2 }\\{ \Leftrightarrow \left| {{y_A} - {y_C}} \right|.\left| {{x_C}} \right| = 4\sqrt 2 }\\{ \Leftrightarrow \left| {m + 1 + {{\left( {{m^2} - 1} \right)}^2} - m - 1} \right|.\sqrt {{m^2} - 1} = 4\sqrt 2 }\\{ \Leftrightarrow {{\left( {{m^2} - 1} \right)}^2}.\sqrt {{m^2} - 1} = 4\sqrt 2 }\\{ \Leftrightarrow {{\left( {{m^2} - 1} \right)}^5} = 32 \Leftrightarrow {m^2} - 1 = 2 \Leftrightarrow {m^2} = 3 \Leftrightarrow m = \pm \sqrt 3 }\end{array}\]

\[m = \pm \sqrt 3 \] thỏa mãn điều kiện\(\left[ {\begin{array}{*{20}{c}}{m > 1}\\{m < - 1}\end{array}} \right.\)

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để đồ thị hàm số\[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành thì phương trình\[m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\,\,\left( * \right)\] phải có 3 nghiệm phân biệt.

Ta có:

\[\begin{array}{l}m{x^3} - (2m - 1){x^2} + 2mx - m - 1 = 0\\ \Leftrightarrow (x - 1)[m{x^2} - (m - 1)x + m + 1] = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{m{x^2} - (m - 1)x + m + 1 = 0( * * )}\end{array}} \right.\end{array}\]

Để (*) có ba nghiệm phân biệt thì (**) phải có 2 nghiệm phân biệt khác 1.

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m.1 - (m - 1).1 + m + 1 \ne 0}\\{\Delta = {{(m - 1)}^2} - 4m(m + 1) > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m - m + 1 + m + 1 \ne 0}\\{{m^2} - 2m + 1 - 4{m^2} - 4m > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{ - 3{m^2} - 6m + 1 > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{\frac{{ - 3 - 2\sqrt 3 }}{3} < m < \frac{{ - 3 + 2\sqrt 3 }}{3}}\end{array}} \right.\end{array}\)

Mà\[m \in \mathbb{Z} \Rightarrow m = - 1\]

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: C

Lời giải

Bước 1:

Số điểm cực trị của hàm số\[y = f\left( {\left| x \right|} \right)\] là \[2m + 1\] trong đó m là số điềm cực trị dương của hàm số\[y = f\left( x \right)\]

Do đó để hàm số\[y = f\left( {\left| x \right|} \right)\]  có đúng 3 điểm cực trị thì m=1⇒ hàm số\[y = f\left( x \right)\] phải có 1 điểm cực trị dương (*).

Bước 2:

Ta có:\[f'\left( x \right) = {x^2} + 2mx + {m^2} - 4\]

Xét\[f'\left( x \right) = 0\] có\[{\rm{\Delta '}} = {m^2} - {m^2} + 4 > 0\,\,\forall m\]  nên\[f'\left( x \right) = 0\] có 2 nghiệm phân biệt

\(\left[ {\begin{array}{*{20}{c}}{{x_1} = - m + 2}\\{{x_2} = - m - 2}\end{array}} \right.\)

Bước 3:

\[\left( * \right) \Rightarrow - m - 2 \le 0 < - m + 2 \Leftrightarrow - 2 \le m < 2\]

Mà \[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0;1} \right\}\]

Vậy có 4 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP