Câu hỏi:
28/06/2022 202Cho hàm số \[y = {x^4} - 2m{x^2} + {m^2} + m.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có một góc 120o là:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
\[\begin{array}{l}y\prime = 4{x^3} - 4mx\\y\prime = 0 \Leftrightarrow 4{x^3} - 4mx = 0 \Leftrightarrow 4x({x^2} - m) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \pm \sqrt m }\end{array}} \right.\end{array}\]
Điều kiện để hàm số có 3 cực trị: m>0
\[\begin{array}{*{20}{l}}{x = 0 \Rightarrow A\left( {0;\,{m^2} + m} \right)}\\{x = - \sqrt m \Rightarrow y = {{\left( { - \sqrt m } \right)}^4} - 2m{{\left( { - \sqrt m } \right)}^2} + {m^2} + m}\\{ = {m^2} - 2{m^2} + {m^2} + m = m \Rightarrow B\left( { - \sqrt m ;\,m} \right)}\\{x = \sqrt m \Rightarrow C\left( {\sqrt m ;\,m} \right)}\end{array}\]
\[\begin{array}{l}\overrightarrow {AB} = ( - \sqrt m ; - {m^2}),\overrightarrow {AC} = (\sqrt m ; - {m^2})\\\widehat {BAC} = {120^0}\end{array}\]
\(\begin{array}{l} \Leftrightarrow \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = cos{120^0}\\ \Leftrightarrow \frac{{ - m + {m^4}}}{{\sqrt {m + {m^4}} .\sqrt {m + {m^4}} }} = - \frac{1}{2}\\ \Leftrightarrow 2({m^4} - m) = - (m + {m^4})\\ \Leftrightarrow 3{m^4} - m = 0\\ \Leftrightarrow m(3{m^3} - 1) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0(loai)}\\{m = \frac{1}{{\sqrt[3]{3}}}}\end{array}} \right.\end{array}\)
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 4} \right)x + 1\]. Có bao nhiêu giá trị nguyên của tham số mm để hàm số \[y = f(|x|)\;\] có đúng 3 điểm cực trị?
Câu 2:
Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.
Câu 3:
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \[y = \mid 3{x^4} - 4{x^3} - 12{x^2} + m\mid \;\] có 5 điểm cực trị?
Câu 4:
Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số \[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành.
Câu 5:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị.
Câu 6:
Hãy lập phương trình đường thẳng (d) đi qua các điểm cực đại và cực tiểu của đồ thị hàm số \[y = {x^3} + 3m{x^2} - 3x\]
Câu 7:
Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!