Câu hỏi:

28/06/2022 267

Gọi \[{m_0}\]  là giá trị của mm thỏa mãn đồ thị hàm số \[y = \frac{{{x^2} + mx - 5}}{{{x^2} + 1}}\] có hai điểm cực trị A,B  sao cho đường thẳng AB đi qua điểm I(1;−3). Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

TXĐ:\[D = \mathbb{R}\]

Ta có\[y = \frac{{{x^2} + mx - 5}}{{{x^2} + 1}} = 1 + \frac{{mx - 6}}{{{x^2} + 1}}\]

Suy ra \[y' = \frac{{m\left( {{x^2} + 1} \right) - 2x\left( {mx - 6} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{ - m{x^2} + 12x + m}}{{{{\left( {{x^2} + 1} \right)}^2}}}\]

Để hàm số đã cho có hai cực trị thì phương trình\[y' = 0\] có hai nghiệm phân biệt hay\[ - m{x^2} + 12x + m = 0\] có hai nghiệm phân biệt. Ta có\[{\rm{\Delta '}} = 36 + {m^2} > 0;\,\forall m\] nên hàm số luôn có hai cực trị.

Phương trình đường thẳng AB qua hai điểm cực trị là

\[y = \frac{{2\left( { - m} \right)x - 4.\left( { - 5} \right)}}{{ - 4}} = \frac{m}{2}x - 5\]

Đường thẳng AB qua điểm I(1;−3) nên\[ - 3 = \frac{m}{2}.1 - 5 \Leftrightarrow m = 4\]

Suy ra\[{m_0} = 4\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để đồ thị hàm số\[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành thì phương trình\[m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\,\,\left( * \right)\] phải có 3 nghiệm phân biệt.

Ta có:

\[\begin{array}{l}m{x^3} - (2m - 1){x^2} + 2mx - m - 1 = 0\\ \Leftrightarrow (x - 1)[m{x^2} - (m - 1)x + m + 1] = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{m{x^2} - (m - 1)x + m + 1 = 0( * * )}\end{array}} \right.\end{array}\]

Để (*) có ba nghiệm phân biệt thì (**) phải có 2 nghiệm phân biệt khác 1.

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m.1 - (m - 1).1 + m + 1 \ne 0}\\{\Delta = {{(m - 1)}^2} - 4m(m + 1) > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m - m + 1 + m + 1 \ne 0}\\{{m^2} - 2m + 1 - 4{m^2} - 4m > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{ - 3{m^2} - 6m + 1 > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{\frac{{ - 3 - 2\sqrt 3 }}{3} < m < \frac{{ - 3 + 2\sqrt 3 }}{3}}\end{array}} \right.\end{array}\)

Mà\[m \in \mathbb{Z} \Rightarrow m = - 1\]

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: C

Lời giải

Bước 1:

Số điểm cực trị của hàm số\[y = f\left( {\left| x \right|} \right)\] là \[2m + 1\] trong đó m là số điềm cực trị dương của hàm số\[y = f\left( x \right)\]

Do đó để hàm số\[y = f\left( {\left| x \right|} \right)\]  có đúng 3 điểm cực trị thì m=1⇒ hàm số\[y = f\left( x \right)\] phải có 1 điểm cực trị dương (*).

Bước 2:

Ta có:\[f'\left( x \right) = {x^2} + 2mx + {m^2} - 4\]

Xét\[f'\left( x \right) = 0\] có\[{\rm{\Delta '}} = {m^2} - {m^2} + 4 > 0\,\,\forall m\]  nên\[f'\left( x \right) = 0\] có 2 nghiệm phân biệt

\(\left[ {\begin{array}{*{20}{c}}{{x_1} = - m + 2}\\{{x_2} = - m - 2}\end{array}} \right.\)

Bước 3:

\[\left( * \right) \Rightarrow - m - 2 \le 0 < - m + 2 \Leftrightarrow - 2 \le m < 2\]

Mà \[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0;1} \right\}\]

Vậy có 4 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP