Câu hỏi:

28/06/2022 307 Lưu

Cho hàm số \[y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6\] với mm là tham số thực. Tìm tất cả các giá trị của m để hàm số có hai điểm cực trị \[{x_1},{x_2}\] thỏa mãn \[{x_1} < - 1 < {x_2}\]

A.m>1

B.m<1

C.m>−1

D.m<−1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có\[y' = 3{x^2} + 12x + 3\left( {m + 2} \right) = 3\left[ {{x^2} + 4x + \left( {m + 2} \right)} \right].\]

Yêu cầu bài toán\[ \Leftrightarrow y' = 0\] có hai nghiệm phân biệt \[{x_1},{x_2}\] thỏa mãn \[{x_1} < - 1 < {x_2}\]

- Hàm số có hai điểm cực trị \[ \Leftrightarrow {\rm{\Delta '}} = 4 - \left( {m + 2} \right) = 2 - m > 0 \Leftrightarrow m < 2\]Hai điểm cực trị thỏa mãn\[{x_1} < - 1 < {x_2}\]  ⇔ phương trình \[y' = 0\] có hai nghiệm phân biệt\[ \Leftrightarrow y'\left( { - 1} \right) < 0 \Leftrightarrow m < 1.\].

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để đồ thị hàm số\[y = m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1\] có hai điểm cực trị nằm về hai phía của trục hoành thì phương trình\[m{x^3} - \left( {2m - 1} \right){x^2} + 2mx - m - 1 = 0\,\,\left( * \right)\] phải có 3 nghiệm phân biệt.

Ta có:

\[\begin{array}{l}m{x^3} - (2m - 1){x^2} + 2mx - m - 1 = 0\\ \Leftrightarrow (x - 1)[m{x^2} - (m - 1)x + m + 1] = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{m{x^2} - (m - 1)x + m + 1 = 0( * * )}\end{array}} \right.\end{array}\]

Để (*) có ba nghiệm phân biệt thì (**) phải có 2 nghiệm phân biệt khác 1.

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m.1 - (m - 1).1 + m + 1 \ne 0}\\{\Delta = {{(m - 1)}^2} - 4m(m + 1) > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m - m + 1 + m + 1 \ne 0}\\{{m^2} - 2m + 1 - 4{m^2} - 4m > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{ - 3{m^2} - 6m + 1 > 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{m \ne - 2}\\{\frac{{ - 3 - 2\sqrt 3 }}{3} < m < \frac{{ - 3 + 2\sqrt 3 }}{3}}\end{array}} \right.\end{array}\)

Mà\[m \in \mathbb{Z} \Rightarrow m = - 1\]

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: C

Lời giải

Xét hàm số \[f\left( x \right) = 3{x^4} - 4{x^3} - 12{x^2}\] ta có

\[\begin{array}{l}f\prime (x) = 12{x^3} - 12{x^2} - 24x\\f\prime (x) = 0 \Leftrightarrow 12{x^3} - 12{x^2} - 24x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 1}\\{x = 2}\end{array}} \right.\end{array}\]

BBT:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số  (ảnh 1)

Ta có đồ thị \[y = f\left( x \right)\,\,\left( C \right)\] như sau:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số  (ảnh 2)

Để\[y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\] có 5 điểm cực trị thì:

TH1: (C) cắt đường thẳng y=−m tại 2 điểm phân biệt khác cực trị

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - m > 0}\\{ - 32 < - m < - 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m < 0}\\{5 < m < 32}\end{array}} \right.\)

Mà\[m \in {\mathbb{Z}^ + }\, \Rightarrow m \in \left\{ {6;7;...;31} \right\}\] 26 giá trị.

TH2: (C) cắt đường thẳng y=−m tại 3 điểm phân biệt, trong đó có 1 cực trị

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - m = 0}\\{ - m = - 5}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0(L)}\\{m = 5(TM)}\end{array}} \right.\)

Vậy, có tất cả 27 giá trị của m thỏa mãn.

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.m=−4                     

B.m=−1                     

C.m=1                                 

D.m=3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\[y = mx + 3m - 1\]

B. \[y = - 2\left( {{m^2} + 1} \right)x + m\]

C. \[y = \left( {2{m^3} - 2} \right)x\]

D. \[y = - 2x + 2m\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP