Câu hỏi:

28/06/2022 485 Lưu

Một đám vi trùng tại ngày thứ tt có số lượng N(t), biết rằng \[N\prime (t) = \frac{{4000}}{{1 + 0,5t\;}}\] và lúc đầu đám vi trùng có 250000 con. Hỏi số lượng vi trùng tại ngày thứ 10 (lấy theo phần nguyên) là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \[N(t) = \smallint N'(t)dt = \smallint \frac{{4000}}{{0,5t + 1}}dt\]

\[ = \frac{{4000}}{{0,5}}\ln \left| {0,5t + 1} \right| + C = 8000\ln \left| {0,5t + 1} \right| + C\]

Với t=0 thì\[250000 = 8000\ln 1 + C \Leftrightarrow C = 250000\]

Vậy \[N\left( t \right) = 8000\ln \left| {0,5t + 1} \right| + 250000 \Rightarrow N\left( {10} \right) \approx 264334\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu\[F'\left( x \right) = f\left( x \right)\]

Đáp án cần chọn là: C

Lời giải

Vì\[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số\[f\left( x \right){e^{4x}}\] nên:

\[\begin{array}{*{20}{l}}{f\left( x \right){e^{4x}} = F'\left( x \right) = 2x}\\{ \Rightarrow f\left( x \right) = \frac{{2x}}{{{e^{4x}}}}}\end{array}\]

\[\begin{array}{*{20}{l}}{ \Rightarrow f'\left( x \right) = \frac{{2{e^{4x}} - 8x.{e^{4x}}}}{{{{\left( {{e^{4x}}} \right)}^2}}} = \frac{{2 - 8x}}{{{e^{4x}}}}}\\{ \Rightarrow f'\left( x \right){e^{4x}} = 2 - 8x}\\{ \Rightarrow \smallint f'\left( x \right){e^{4x}}dx = \smallint \left( {2 - 8x} \right)dx = - 4{x^2} + 2x + C}\end{array}\]

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP