Câu hỏi:

28/06/2022 285 Lưu

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: f\[\left( 0 \right) = 2\sqrt 2 ,\;f(x) > 0,\forall x \in \mathbb{R}\;\] và \[f(x).f\prime (x) = (2x + 1)\sqrt {1 + {f^2}(x)} ,\forall x \in \mathbb{R}\]. Khi đó giá trị f(1) bằng

A.\[\sqrt {15} \]

B. \[\sqrt {23} \]

C. \[\sqrt {24} \]

D. \[\sqrt {26} \]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có:\[f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} \]

\[ \Rightarrow \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1 \Rightarrow \smallint \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx = \smallint \left( {2x + 1} \right)dx\]

Tính\[\smallint \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx\]  ta đặt

\[\sqrt {1 + {f^2}\left( x \right)} = t \Rightarrow 1 + {f^2}\left( x \right) = {t^2} \Rightarrow 2f\left( x \right)f'\left( x \right)dx = 2tdt\]

\[ \Rightarrow f\left( x \right)f'\left( x \right)dx = tdt\]

Thay vào ta được

\[\smallint \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx = \smallint \frac{{tdt}}{t} = \smallint dt = t + C = \sqrt {1 + {f^2}\left( x \right)} + C\]

Do đó\[\sqrt {1 + {f^2}\left( x \right)} + C = {x^2} + x\]

\[f\left( 0 \right) = 2\sqrt 2 \Rightarrow \sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}} + C = 0 \Leftrightarrow C = - 3\]

Từ đó:

\[\begin{array}{*{20}{l}}{\sqrt {1 + {f^2}\left( x \right)} - 3 = {x^2} + x \Rightarrow \sqrt {1 + {f^2}\left( 1 \right)} - 3 = 1 + 1 \Leftrightarrow \sqrt {1 + {f^2}\left( 1 \right)} = 5}\\{ \Leftrightarrow 1 + {f^2}\left( 1 \right) = 25 \Leftrightarrow {f^2}\left( 1 \right) = 24 \Leftrightarrow f\left( 1 \right) = \sqrt {24} }\end{array}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[F'\left( x \right) = f''\left( x \right)\]

B. \[F'\left( x \right) = f'\left( x \right)\]

C. \[F'\left( x \right) = f'\left( x \right)\]

D. \[f'\left( x \right) = F\left( x \right)\]

Lời giải

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu\[F'\left( x \right) = f\left( x \right)\]

Đáp án cần chọn là: C

Lời giải

Bước 1:

Vì F(x) là 1 nguyên hàm của hàm số f(x) nên ta có\[F'\left( x \right) = f\left( x \right)\]

\[\begin{array}{*{20}{l}}{F'\left( x \right) = \left( {2ax + b} \right){e^x} + \left( {a{x^2} + bx + c} \right){e^x}}\\{F'\left( x \right) = \left( {a{x^2} + bx + c + 2ax + b} \right){e^x}}\\{F'\left( x \right) = \left[ {a{x^2} + \left( {2a + b} \right)x + b + c} \right]{e^x}}\\{ = {x^2}.{e^x}}\end{array}\]

Bước 2:

Ta có:

\[\begin{array}{*{20}{l}}{{x^2} = 1.{x^2} + 0.x + 0}\\{\left[ {a.{x^2} + \left( {2a + b} \right)x + b + c} \right]{e^x} = {x^2}.{e^x}}\\{ \Leftrightarrow a.{x^2} + \left( {2a + b} \right)x + b + c = {x^2}}\\{ \Leftrightarrow a.{x^2} + \left( {2a + b} \right)x + b + c = 1.{x^2} + 0.x + 0}\end{array}\]

Đồng nhất hệ số ta có:\(\left\{ {\begin{array}{*{20}{c}}{a = 1}\\\begin{array}{l}2a + b = 0\\b + c = 0\end{array}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\\begin{array}{l}b = - 2\\c = 2\end{array}\end{array}} \right.\)

Vậy\[P = abc = 1.\left( { - 2} \right).2 = - 4.\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[x + \frac{1}{{x - 2}} + C\]

B. \[\frac{{{x^2}}}{2} + \ln \left| {x - 2} \right| + C\]

C. \[{x^2} + \ln \left| {x - 2} \right| + C\]

D. \[1 + \frac{1}{{{{\left( {x - 2} \right)}^2}}} + C\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\smallint \frac{1}{{x + 2}}dx = \ln \left( {x + 2} \right) + C\]

B.\[y = \ln \left( {3\left| {x + 2} \right|} \right)\] là một nguyên hàm của f(x)

C.\[y = \ln \left| {x + 2} \right| + C\] là họ nguyên hàm của f(x)

D.\[y = \ln \left| {x + 2} \right|\] là một nguyên hàm của f(x)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\[{x^2}\left( {1 + \frac{3}{4}{x^2}} \right) + C\]

b. \[\frac{{{x^2}}}{2}\left( {2x + {x^3}} \right) + C\]

C. \[{x^2}\left( {2 + 6x} \right) + C\]

D. \[{x^2} + \frac{3}{4}{x^4}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP