Giải SBT Toán 11 KNTT Bài 9. Các số đặc trưng đo xu thế trung tâm có đáp án

42 người thi tuần này 4.6 319 lượt thi 6 câu hỏi

🔥 Đề thi HOT:

1386 người thi tuần này

Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)

26.7 K lượt thi 30 câu hỏi
723 người thi tuần này

10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)

3.7 K lượt thi 10 câu hỏi
551 người thi tuần này

15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)

4.3 K lượt thi 15 câu hỏi
369 người thi tuần này

Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)

12.3 K lượt thi 25 câu hỏi
354 người thi tuần này

23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)

6.7 K lượt thi 23 câu hỏi
312 người thi tuần này

10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)

1.4 K lượt thi 10 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Trong mỗi khoảng quãng đường các cầu thủ chạy, giá trị đại diện chính là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Quãng đường

3

5

7

9

11

Số cầu thủ

2

5

6

9

3

Tổng số cầu thủ là n = 2 + 5 + 6 + 9 + 3 = 25.

Quãng đường trung bình một cầu thủ chạy trong trận đấu này là

x¯=2.3+5.5+6.7+9.9+3.1125=7,48  km.

Lời giải

Cỡ mẫu n = 2 + 5 + 6 + 9 + 3 = 25.

Gọi x1, x2, ..., x25 là quãng đường chạy của 25 cầu thủ và giả sử dãy này đã được sắp xếp theo thứ tự không giảm. Khi đó, trung vị là x13, mà x13 thuộc nhóm [6; 8) nên nhóm này chứa trung vị. Do đó, trung vị là

Me=6+2522+56.867,83.

Ý nghĩa: Có 50% số cầu thủ chạy nhiều hơn 7,83 km và có 50% số cầu thủ chạy ít hơn 7,83 km.

Lời giải

Số a thỏa mãn có 25% số cầu thủ tham gia trận đấu chạy ít nhất a (km).

Do đó, a chính là tứ phân vị thứ ba của mẫu số liệu trên.

Cỡ mẫu n = 25.

Gọi x1, x2, ..., x25 là quãng đường chạy của 25 cầu thủ và giả sử dãy này đã được sắp xếp theo thứ tự không giảm. Khi đó tứ phân vị thứ ba là x19+x202. Do x19, x20 đều thuộc nhóm [8; 10) nên nhóm này chứa tứ phân vị thứ ba. Do đó a=Q3=8+3.2542+5+69.1089,28.

Lời giải

Trong mỗi khoảng số lần đi muộn của các bạn trong lớp, giá trị đại diện chính là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

Số lần đi muộn

1

4

7

10

13

Số học sinh

23

8

5

3

1

Tổng số học sinh là n = 23 + 8 + 5 + 3 + 1 = 40.

Trung bình trong học kì mỗi học sinh đi muộn số buổi là

x¯=23.1+8.4+5.7+3.10+1.1340 = 3,325 (buổi).

4.6

64 Đánh giá

50%

40%

0%

0%

0%