Câu hỏi:
25/05/2022 438Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Trường hợp 1: \[\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\] Khi đó \[{\sin ^2}x = 1\]Thay vào phương trình ta có:\[1 - m.0 - 3.0 = 2m\, \Leftrightarrow 2m = 1 \Leftrightarrow m = \frac{1}{2} \notin Z \Rightarrow \] loại
Trường hợp 2:\[\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\]
Chia cả 2 vế của phương trình cho\[{\cos ^2}x\] ta được:
\[\begin{array}{*{20}{l}}{\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - m\frac{{\sin x}}{{\cos x}} - 3 = \frac{{2m}}{{{{\cos }^2}x}}}\\{ \Leftrightarrow {{\tan }^2}x - m\tan x - 3 = 2m\left( {1 + {{\tan }^2}x} \right)}\\{ \Leftrightarrow \left( {2m - 1} \right){{\tan }^2}x + m\tan x + 2m + 3 = 0}\end{array}\]Đặt tanx = t khi đó phương trình có dạng\[\left( {2m - 1} \right){t^2} + mt + 2m + 3 = 0\]
\[m = \frac{1}{2} \notin Z \Rightarrow \] loại
\[m \ne \frac{1}{2}\] ta có:\[{\rm{\Delta }} = {m^2} - 4\left( {2m - 1} \right)\left( {2m + 3} \right) = {m^2} - 16{m^2} - 16m + 12 = - 15{m^2} - 16m + 12\]
Để phương trình có nghiệm thì\[{\rm{\Delta }} \ge 0 \Leftrightarrow \frac{{ - 8 - 2\sqrt {61} }}{{15}} \le m \le \frac{{ - 8 + 2\sqrt {61} }}{{15}}\]
Mà\[m \in Z \Rightarrow \left\{ {\begin{array}{*{20}{c}}{m = - 1}\\{m = 0}\end{array}} \right.\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:
Câu 2:
Phương trình \[\sin x + \sqrt 3 \cos x = \sqrt 2 \] có hai họ nghiệm có dạng \[x = \alpha + k2\pi ,x = \beta + k2\pi ,\]\[( - \frac{\pi }{2} < \alpha < \beta < \frac{\pi }{2})\;\]. Khi đó \[\alpha .\beta \;\] là:
Câu 3:
Với giá trị nào của m thì phương trình \[\left( {1 - m} \right){\tan ^2}x - \frac{2}{{\cos x}} + 1 + 3m = 0\]có nhiều hơn 1 nghiệm trên \[(0;\frac{\pi }{2})\;\]?
Câu 5:
Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?
Câu 6:
Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số a phải thỏa mãn điều kiện:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
về câu hỏi!