Câu hỏi:

25/05/2022 421

Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\sqrt 3 \sin 2x - m\cos 2x = 1\]

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{b = \sqrt 3 }\\{b = - m}\\{c = 1}\end{array}} \right.\)

Để phương trình có nghiệm thì \[{a^2} + {b^2} \ge {c^2} \Leftrightarrow 3 + {m^2} \ge 1 \Leftrightarrow {m^2} \ge - 2\](luôn đúng với \[\forall m\])

Vậy phương trình luôn có nghiệm với mọi m.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:

Xem đáp án » 25/05/2022 1,713

Câu 2:

Phương trình \[\sin x + \sqrt 3 \cos x = \sqrt 2 \]  có hai họ nghiệm có dạng \[x = \alpha + k2\pi ,x = \beta + k2\pi ,\]\[( - \frac{\pi }{2} < \alpha < \beta < \frac{\pi }{2})\;\]. Khi đó \[\alpha .\beta \;\] là:

Xem đáp án » 25/05/2022 808

Câu 3:

Với giá trị nào của m thì phương trình \[\left( {1 - m} \right){\tan ^2}x - \frac{2}{{\cos x}} + 1 + 3m = 0\]có nhiều hơn 1 nghiệm trên \[(0;\frac{\pi }{2})\;\]?

Xem đáp án » 25/05/2022 659

Câu 4:

Phương trình \[\sin 2x + 3\sin 4x = 0\] có nghiệm là:

Xem đáp án » 25/05/2022 555

Câu 5:

Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?

Xem đáp án » 25/05/2022 456

Câu 6:

Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số phải thỏa mãn điều kiện:

Xem đáp án » 25/05/2022 424

Bình luận


Bình luận