Câu hỏi:

25/05/2022 630

Với giá trị nào của m thì phương trình \[\left( {1 - m} \right){\tan ^2}x - \frac{2}{{\cos x}} + 1 + 3m = 0\]có nhiều hơn 1 nghiệm trên \[(0;\frac{\pi }{2})\;\]?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\begin{array}{*{20}{l}}{\left( {1 - m} \right){{\tan }^2}x - \frac{2}{{\cos x}} + 1 + 3m = 0}\\{ \Leftrightarrow \left( {1 - m} \right)\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \frac{2}{{\cos x}} + 1 + 3m = 0}\\{ \Leftrightarrow \left( {1 - m} \right){{\sin }^2}x - 2\cos x + \left( {1 + 3m} \right){{\cos }^2}x = 0}\\{ \Leftrightarrow \left( {1 - m} \right)\left( {1 - {{\cos }^2}x} \right) - 2\cos x + \left( {1 + 3m} \right){{\cos }^2}x = 0}\\{ \Leftrightarrow 4m{{\cos }^2}x - 2\cos x + 1 - m = 0}\end{array}\]

Đặt t=cosx

Vì \[x \in \left( {0;\frac{\pi }{2}} \right) \Rightarrow t \in \left( {0;1} \right)\]khi đó phương trình trở thành

\[4m{t^2} - 2t + 1 - m = 0(1)\]

\[ \Leftrightarrow m(4{t^2} - 1) - (2t - 1) = 0\]

\[ \Leftrightarrow m(2t + 1)(2t - 1) - (2t - 1) = 0\]

\[ \Leftrightarrow (2t - 1)(2mt + m - 1) = 0\]

\(\left[ {\begin{array}{*{20}{c}}{t = \frac{1}{2} \in (0;1)}\\{2mt = 1 - m(2)}\end{array}} \right.\)

Để phương trình ban đầu có nhiều hơn 1 nghiệm thuộc\[\left( {0;\frac{\pi }{2}} \right)\]thì phương trình (1)(1) có nhiều hơn 1 nghiệm thuộc (0;1). Khi đó phương trình (2) có nghiệm thuộc\[\left( {0;1} \right) \setminus \left\{ {\frac{1}{2}} \right\}\]

Khi m=0 ta có 0t=1 (vô nghiệm)

Khi \[m \ne 0\]thì \[\left( 2 \right) \Leftrightarrow t = \frac{{1 - m}}{{2m}}\]

Để phương trình (2) có nghiệm thuộc\[\left( {0;1} \right) \setminus \left\{ {\frac{1}{2}} \right\}\] thì

\(\left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{0 < \frac{{1 - m}}{{2m}} < 1}\\{\frac{{1 - m}}{{2m}} \ne \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{\frac{{1 - m}}{{2m}} >0}\\{\frac{{1 - m}}{{2m}} < 1}\\{2(1 - m) \ne 2m}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{\frac{{1 - m}}{{2m}} >0}\\{\frac{{1 - 3m}}{{2m}} < 0}\\{4m \ne 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ne 0}\\{0 < m < 1}\\{\left[ {\begin{array}{*{20}{c}}{m < 0}\\{m >\frac{1}{3}}\end{array}} \right.}\\{m \ne \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{1}{3} < m < 1}\\{m \ne \frac{1}{2}}\end{array}} \right.\)

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:

Xem đáp án » 25/05/2022 1,610

Câu 2:

Phương trình \[\sin x + \sqrt 3 \cos x = \sqrt 2 \]  có hai họ nghiệm có dạng \[x = \alpha + k2\pi ,x = \beta + k2\pi ,\]\[( - \frac{\pi }{2} < \alpha < \beta < \frac{\pi }{2})\;\]. Khi đó \[\alpha .\beta \;\] là:

Xem đáp án » 25/05/2022 759

Câu 3:

Phương trình \[\sin 2x + 3\sin 4x = 0\] có nghiệm là:

Xem đáp án » 25/05/2022 516

Câu 4:

Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?

Xem đáp án » 25/05/2022 423

Câu 5:

Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số phải thỏa mãn điều kiện:

Xem đáp án » 25/05/2022 391

Câu 6:

Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?

Xem đáp án » 25/05/2022 391

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store