Câu hỏi:
25/06/2022 1,028Cho tam giác đều ABC cạnh a. Gọi D là điểm đối xứng với A qua BC. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại D lấy điểm S sao cho \(SD = \frac{{a\sqrt 6 }}{2}\). Gọi I là trung điểm BC; kẻ IH vuông góc SA \[(H \in SA).\]Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Từ giả thiết suy ra ABDC là hình thoi nên \[BC \bot AD.\]
Ta có\(\left\{ {\begin{array}{*{20}{c}}{BC \bot AD}\\{BC \bot SD}\end{array}} \right. \Rightarrow BC \bot (SAD) \Rightarrow BC \bot SA\)
Lại có theo giả thiết\[IH \bot SA\]Từ đó suy ra\[SA \bot \left( {HCB} \right) \Rightarrow SA \bot BH\]
⇒ Đáp án A đúng.
Tính được\[AI = \frac{{a\sqrt 3 }}{2};AD = 2AI = a\sqrt 3 ,S{A^2} = \sqrt {A{D^2} + S{D^2}} = \frac{{3a\sqrt 2 }}{2}.\]
Ta có\[{\rm{\Delta }}AHI \sim {\rm{\Delta }}ADS \Rightarrow \frac{{IH}}{{SD}} = \frac{{AI}}{{AS}} \Rightarrow IH = \frac{{AI.SD}}{{AS}} = \frac{a}{2} = \frac{{BC}}{2} \Rightarrow \]Tam giác HBCHBC có trung tuyến IH bằng nửa cạnh đáy BC nên \[\widehat {BHC} = {90^0}\] hay \[BH \bot HC\]. Do đó D đúng.
Từ mệnh đề A và D suy ra \[BH \bot \left( {SAC} \right) \Rightarrow \left( {SAB} \right) \bot \left( {SAC} \right) \Rightarrow \] mệnh đề C đúng.
Dùng phương pháp loại trừ thì B là đáp án sai.
Đáp án cần chọn là: B
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tam giác ABC cân tại B có M là trung điểm \[AC\,\, \Rightarrow \,\,BM \bot AC.\]
⇒ Đáp án A đúng.
Ta có
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BM \bot AC}\\{BM \bot SA(doSA \bot (ABC))}\end{array}} \right. \Rightarrow BM \bot (SAC)\\ \Rightarrow (SBM) \bot (SAC)\end{array}\)
⇒ Đáp án B đúng.
Ta có
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BC \bot BA}\\{BC \bot SA(doSA \bot (ABC))}\end{array}} \right. \Rightarrow BC \bot (SAB)\\ \Rightarrow (SBC) \bot (SAB)\end{array}\)
⇒ Đáp án C đúng.
Dùng phương pháp loại trừ thì D là đáp án sai.
Đáp án cần chọn là: D
Lời giải
Tam giác SAC đều có I là trung điểm của SC nên \[AI \bot SC\].
⇒ Mệnh đề (I) đúng.
Gọi H là trung điểm AC suy ra \[SH \bot AC\]. Mà \[(SAC) \bot (ABC)\] theo giao tuyến AC nên \[SH \bot (ABC)\] do đó \[SH \bot BC\]. Hơn nữa theo giả thiết tam giác ABC vuông tại C nên \[BC \bot AC\].
Từ đó suy ra \[BC \bot (SAC) \Rightarrow BC \bot AI.\]. Do đó mệnh đề (III) đúng.
Từ mệnh đề (I) và (III) suy ra mệnh đề (IV) đúng.
Ta có : \(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BC \bot AC}\\{BC \bot SH}\end{array}} \right. \Rightarrow BC \bot (SAC)\\BC \subset (SBC) \Rightarrow (SBC) \bot (SAC)\end{array}\)
Vậy mệnh đề (II) đúng.
Vậy mệnh đề (II) đúng.
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.