Câu hỏi:

25/06/2022 907

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy lớn AB; cạnh bên SA vuông góc với đáy. Gọi Q là điểm trên cạnh SA và \[Q \ne A,\;Q \ne S\]; M là điểm trên đoạn AD và \[M \ne A\]. Mặt phẳng (α) qua QM và vuông góc với mặt phẳng (SAD). Thiết diện tạo bởi \[\left( \alpha \right)\;\]với hình chóp đã cho là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy lớn AB; cạnh bên SA vuông góc với đáy. Gọi Q là điểm trên cạnh SA và  (ảnh 1)

Ta có \(\left\{ {\begin{array}{*{20}{c}}{AB \bot AD}\\{AB \bot SA}\end{array}} \right. \Rightarrow AB \bot (SAD)\)Mà (α)⊥(SAD)(α)⊥(SAD) suy ra AB∥(α)AB∥(α).

Qua M kẻ đường thẳng song song với AB cắt BC tại N.

Qua Q kẻ đường thẳng song song với AB cắt SB tại P.

Khi đó thiết diện là hình thang MNPQ (do \[MN\parallel PQ\]).

Vì \[AB \bot \left( {SAD} \right)\] suy ra \[MN \bot \left( {SAD} \right)\] nên \[MN \bot MQ\]

Do đó thiết diện MNPQ là hình thang vuông tại Q và M.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian cho điểm A và mặt phẳng (P). Mệnh đề nào đưới đây đúng ?

Xem đáp án » 25/06/2022 7,300

Câu 2:

Cho tứ diện SABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H,  I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?

Xem đáp án » 25/06/2022 5,347

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?

(I):\[AI \bot SC\]

\[(II):(SBC) \bot (SAC)\]

\[\;(III):AI \bot BC\]

\[(IV):(ABI) \bot (SBC)\]

Xem đáp án » 25/06/2022 3,186

Câu 4:

Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc. Chỉ ra mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 25/06/2022 3,032

Câu 5:

Cho hình lăng trụ tam giác đều ABC.A’B’C’, gọi G là trọng tâm tam giác ABC. (tham khảo hình vẽ). Khẳng định nào sau đây là sai?

Cho hình lăng trụ tam giác đều ABC.A’B’C’, gọi G là trọng tâm tam giác ABC. (tham khảo hình vẽ). Khẳng định nào sau đây là sai? (ảnh 1)

Xem đáp án » 25/06/2022 3,002

Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?

Xem đáp án » 25/06/2022 2,443

Câu 7:

Hình lăng trụ đứng có đáy là hình chữ nhật có bao nhiêu mặt là hình chữ nhật ?

Xem đáp án » 25/06/2022 2,097

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store