Câu hỏi:

25/06/2022 1,065

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy lớn AB; cạnh bên SA vuông góc với đáy. Gọi Q là điểm trên cạnh SA và \[Q \ne A,\;Q \ne S\]; M là điểm trên đoạn AD và \[M \ne A\]. Mặt phẳng (α) qua QM và vuông góc với mặt phẳng (SAD). Thiết diện tạo bởi \[\left( \alpha \right)\;\]với hình chóp đã cho là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy lớn AB; cạnh bên SA vuông góc với đáy. Gọi Q là điểm trên cạnh SA và  (ảnh 1)

Ta có \(\left\{ {\begin{array}{*{20}{c}}{AB \bot AD}\\{AB \bot SA}\end{array}} \right. \Rightarrow AB \bot (SAD)\)Mà (α)⊥(SAD)(α)⊥(SAD) suy ra AB∥(α)AB∥(α).

Qua M kẻ đường thẳng song song với AB cắt BC tại N.

Qua Q kẻ đường thẳng song song với AB cắt SB tại P.

Khi đó thiết diện là hình thang MNPQ (do \[MN\parallel PQ\]).

Vì \[AB \bot \left( {SAD} \right)\] suy ra \[MN \bot \left( {SAD} \right)\] nên \[MN \bot MQ\]

Do đó thiết diện MNPQ là hình thang vuông tại Q và M.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Tam giác ABC cân tại B có M là trung điểm \[AC\,\, \Rightarrow \,\,BM \bot AC.\]

⇒ Đáp án A đúng.

Ta có

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BM \bot AC}\\{BM \bot SA(doSA \bot (ABC))}\end{array}} \right. \Rightarrow BM \bot (SAC)\\ \Rightarrow (SBM) \bot (SAC)\end{array}\)

⇒ Đáp án B đúng.

Ta có

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BC \bot BA}\\{BC \bot SA(doSA \bot (ABC))}\end{array}} \right. \Rightarrow BC \bot (SAB)\\ \Rightarrow (SBC) \bot (SAB)\end{array}\)

⇒ Đáp án C đúng.

Dùng phương pháp loại trừ thì D là đáp án sai.

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai? (ảnh 1)

Đáp án cần chọn là: D

Lời giải

Tam giác SAC đều có I là trung điểm của SC nên \[AI \bot SC\].

⇒ Mệnh đề (I) đúng.

Gọi H là trung điểm AC suy ra \[SH \bot AC\]. Mà \[(SAC) \bot (ABC)\] theo giao tuyến AC nên \[SH \bot (ABC)\] do đó \[SH \bot BC\]. Hơn nữa theo giả thiết tam giác ABC vuông tại C nên \[BC \bot AC\].

Từ đó suy ra \[BC \bot (SAC) \Rightarrow BC \bot AI.\]. Do đó mệnh đề (III) đúng.

Từ mệnh đề (I) và (III) suy ra mệnh đề (IV) đúng.

Ta có : \(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BC \bot AC}\\{BC \bot SH}\end{array}} \right. \Rightarrow BC \bot (SAC)\\BC \subset (SBC) \Rightarrow (SBC) \bot (SAC)\end{array}\)

Vậy mệnh đề (II) đúng.

Vậy mệnh đề (II) đúng.

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP