Câu hỏi:
27/06/2022 1,571Cho tứ diện gần đều ABCD, biết \[AB = CD = 5,AC = BD = \sqrt {34} ,AD = BC = \sqrt {41} \]. Tính sin của góc giữa hai đường thẳng AB và CD.
Quảng cáo
Trả lời:
Gọi I, J, K, P lần lượt là trung điểm của AD, AC, BC, BD.
Khi đó, AB // IP // JK, CD // IJ // KP
\[ \Rightarrow \left( {\widehat {AB;CD}} \right) = \left( {\widehat {IP;KP}} \right)\]
Ta có:\[KP = \frac{1}{2}CD = \frac{5}{2},IP = \frac{1}{2}AB = \frac{5}{2}\]
\[A{K^2} = \frac{{A{B^2} + A{C^2}}}{2} - \frac{{B{C^2}}}{4} = \frac{{25 + 34}}{2} - \frac{{41}}{4} = \frac{{77}}{4} = D{K^2}\]
Tam giác AKD cân tại K, KI là trung tuyến
\[ \Rightarrow KI \bot AD \Rightarrow I{K^2} = A{K^2} - A{I^2} = \frac{{77}}{4} - \frac{{41}}{4} = 9\]
\[\cos \widehat {IPK} = \frac{{I{P^2} + K{P^2} - I{K^2}}}{{2.IP.KP}} = \frac{{\frac{{25}}{4} + \frac{{25}}{4} - 9}}{{2.\frac{5}{2}.\frac{5}{2}}} = \frac{7}{{25}} > 0 \Rightarrow \widehat {IPK} < {90^0}\]
\[ \Rightarrow \left( {\widehat {AB;CD}} \right) = \left( {\widehat {IP;KP}} \right) = \widehat {IPK} \Rightarrow \sin \left( {\widehat {AB;CD}} \right) = \sin \widehat {IPK} = \sqrt {1 - {{\left( {\frac{7}{{25}}} \right)}^2}} = \frac{{24}}{{25}}\]
Đáp án cần chọn là: A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bước 1: Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh MN là đoạn vuông góc chung của AB và CD.
Gọi M, N lần lượt là trung điểm của AB và CD.
\[{\rm{\Delta }}BCD,{\rm{\Delta }}ACD\] đều nên:
\(\left. {\begin{array}{*{20}{c}}{AN \bot CD}\\{BN \bot CD}\end{array}} \right\} \Rightarrow (ABN) \bot CD \Rightarrow MN \bot CD\)
Tương tự ta có \[MN \bot AB\]
Khoảng cách giữa 2 đường thẳng AB, CD là độ dài của MN.
Bước 2: Tính MN.
\[{\rm{\Delta }}ACD\] đều cạnh 2a; AN là đường cao.
\[ \to AN = AC.\frac{{\sqrt 3 }}{2} = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \]
\[AM = \frac{1}{2}AB = a\]
\[{\rm{\Delta }}AMN\] vuông tại M\[MN \bot AB\] nên:
\[MN = \sqrt {A{N^2} - A{M^2}} = \sqrt {3{a^2} - {a^2}} = a\sqrt 2 \]
Đáp án cần chọn là: B
Lời giải
Do \[AB\parallel CD\] nên\[d\left( {SD;AB} \right) = d\left( {AB;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right) = \frac{4}{3}d\left( {H;\left( {SCD} \right)} \right).\]
(Do\[AH \cap \left( {SCD} \right) = C \Rightarrow \frac{{d\left( {A;\left( {SCD} \right)} \right)}}{{d\left( {H;\left( {SCD} \right)} \right)}} = \frac{{AC}}{{HC}} = \frac{4}{3}\]
\[ \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = \frac{4}{3}d\left( {H;\left( {SCD} \right)} \right)\]
Kẻ\[HE \bot CD\], kẻ\[HL \bot SE\,\,\left( 1 \right)\] ta có:
\(\left\{ {\begin{array}{*{20}{c}}{CD \bot SH}\\{CD \bot HE}\end{array}} \right. \Rightarrow CD \bot (SHE) \Rightarrow CD \bot HL(2)\)
Từ (1) và (2) \[ \Rightarrow HL \bot \left( {SCD} \right)\]
\[ \Rightarrow d\left( {H;\left( {SCD} \right)} \right) = HL\]
Tính được\[SH = \sqrt {S{A^2} - A{H^2}} = a\sqrt 2 ,HE = \frac{3}{4}AD = 3a.\]
Khi đó\[d\left( {H;\left( {SCD} \right)} \right) = HL = \frac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \frac{{3a\sqrt 2 }}{{\sqrt {11} }}.\]
Vậy\[d\left( {SD;AB} \right) = \frac{4}{3}HL = \frac{{4a\sqrt {22} }}{{11}}.\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.