Câu hỏi:

28/06/2022 590

Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \[y = {x^2} + 1;x = 0\] và tiếp tuyến của đồ thị hàm số \[y = {x^2} + 1\;\] tại điểm A(1;2) quanh trục Ox là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[y' = 2x;y'\left( 1 \right) = 2\]  suy ra phương trình tiếp tuyến là\[y = 2\left( {x - 1} \right) + 2 = 2x\]

Ta có: \[{x^2} + 1 = 2x \Leftrightarrow x = 1\]

Trong đoạn\[[0;1]\] thì \[{x^2} + 1 \ge 2x\] nên:

Thể tích khối tròn xoay

\[V = \pi \mathop \smallint \limits_0^1 \left[ {{{\left( {{x^2} + 1} \right)}^2} - {{\left( {2x} \right)}^2}} \right]dx = \pi \mathop \smallint \limits_0^1 \left( {{x^4} - 2{{\rm{x}}^2} + 1} \right)dx = \frac{8}{{15}}\pi \]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi V1 là thể tích khối tròn tạo thành khi quay quanh tam giác OMH quanh trục Ox. Biết rằng \[V = 2{V_{1\;}}\]. Khi đó:

Thể tích khối tròn xoay\(V = \pi \int\limits_0^4 {xdx = \pi \frac{{{x^2}}}{2}} \left| {_0^4} \right. = 8\pi \)

Suy ra\[{V_1} = 4\pi \]

Gọi N là giao điểm của đường thẳng x=a và trục hoành. Khi đó V1 là thể tích tạo được khi xoay hai tam giác OMN và MNH quanh trục Ox với N là hình chiếu của M trên OH.

Ta có \[{V_1} = \frac{1}{3}\pi .a.{\left( {\sqrt a } \right)^2} + \frac{1}{3}\pi .\left( {4 - a} \right).{\left( {\sqrt a } \right)^2} = \frac{4}{3}\pi a\]

Suy ra\[\frac{4}{3}\pi a = 4\pi \Rightarrow a = 3\]

Đáp án cần chọn là: D

Câu 2

Lời giải

Thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) giới hạn bởi đồ thị hàm số\[y = f\left( x \right)\] trục Ox và hai đường thẳng\[x = a,x = b(a < b)\] quanh trục Ox là: \[V = \pi \mathop \smallint \limits_a^b {f^2}\left( x \right)dx\]

Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP