Câu hỏi:
28/06/2022 316Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đồ thị \[y = - \,\sqrt {4 - {x^2}} ,\,\,{x^2} + 3y = 0\] quay quanh trục Ox là \[V = \frac{{a\pi \sqrt 3 }}{b}\], với a,b> và \(\frac{a}{b}\) là phân số tối giản. Tính tổng T=a+b.
Quảng cáo
Trả lời:
\[{x^2} + 3y = 0 \Leftrightarrow y = - \frac{{{x^2}}}{3}\]
Hoành độ giao điểm là nghiệm của phương trình
\( - \sqrt {4 - {x^2}} = - \frac{{{x^2}}}{3} \Leftrightarrow 3\sqrt {4 - {x^2}} = {x^2}\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 \le {x^2} \le 4}\\{{x^4} + 9{x^2} - 36 = 0}\end{array}} \right.\)
\[ \Leftrightarrow {x^2} = 3 \Leftrightarrow x = \pm \,\sqrt 3 .\]
Khi đó, thể tích khối tròn xoay cần tính là
\[V = \pi \mathop \smallint \limits_{ - {\kern 1pt} \sqrt 3 }^{\sqrt 3 } \left| {{{\left( { - \,\sqrt {4 - {x^2}} } \right)}^2} - {{\left( { - \,\frac{{{x^2}}}{3}} \right)}^2}} \right|\,{\rm{d}}x.\]
\[ = \pi \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left| {(4 - {x^2}) - \frac{{{x^4}}}{9}} \right|} dx = \left| {\pi \left( {4x - \frac{{{x^3}}}{3} - \frac{{{x^5}}}{{45}}} \right)\left| {_{ - \sqrt 3 }^{\sqrt 3 }} \right.} \right|\]
\[ = 2\pi \left( {4\sqrt 3 - \sqrt 3 - \frac{{\sqrt 3 }}{5}} \right) = \frac{{28\pi \sqrt 3 }}{5}\]
Vậy
\(V = \frac{{28\pi \sqrt 3 }}{5} = \frac{{a\pi \sqrt 3 }}{b} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = 28}\\{b = 5}\end{array}} \right. \Rightarrow T = a + b = 28 + 5 = 33.\)
Đáp án cần chọn là: A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi V1 là thể tích khối tròn tạo thành khi quay quanh tam giác OMH quanh trục Ox. Biết rằng \[V = 2{V_{1\;}}\]. Khi đó:
Thể tích khối tròn xoay\(V = \pi \int\limits_0^4 {xdx = \pi \frac{{{x^2}}}{2}} \left| {_0^4} \right. = 8\pi \)
Suy ra\[{V_1} = 4\pi \]
Gọi N là giao điểm của đường thẳng x=a và trục hoành. Khi đó V1 là thể tích tạo được khi xoay hai tam giác OMN và MNH quanh trục Ox với N là hình chiếu của M trên OH.
Ta có \[{V_1} = \frac{1}{3}\pi .a.{\left( {\sqrt a } \right)^2} + \frac{1}{3}\pi .\left( {4 - a} \right).{\left( {\sqrt a } \right)^2} = \frac{4}{3}\pi a\]
Suy ra\[\frac{4}{3}\pi a = 4\pi \Rightarrow a = 3\]
Đáp án cần chọn là: D
Lời giải
Thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) giới hạn bởi đồ thị hàm số\[y = f\left( x \right)\] trục Ox và hai đường thẳng\[x = a,x = b(a < b)\] quanh trục Ox là: \[V = \pi \mathop \smallint \limits_a^b {f^2}\left( x \right)dx\]
Đáp án cần chọn là: C
>Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.