Câu hỏi:

28/06/2022 412

Tính thể tích hình xuyến do quay hình tròn  có phương trình \[{x^2} + {\left( {y - 2} \right)^2} = 1\] khi quanh trục Ox..

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét\[\left( C \right):{x^2} + {\left( {y - 2} \right)^2} = 1\]  có tâm\[I\left( {0;2} \right),\] bán kính\[R = 1.\] Như vậy

Nửa (C) trên ứng với \[2 \le y \le 3\] có phương trình\[y = {f_1}\left( x \right) = 2 + \sqrt {1 - {x^2}} \] với\[x \in \left[ { - \,1;1} \right].\]

Nửa (C) dưới ứng với\[1 \le y \le 2\] có phương trình\[y = {f_2}\left( x \right) = 2 - \sqrt {1 - {x^2}} \] với\[x \in \left[ { - \,1;1} \right].\]

Khi đó, thể tích khối tròn xoay cần tính là

\[V = \pi \mathop \smallint \limits_{ - {\kern 1pt} 1}^1 \left[ {{{\left( {2 + \sqrt {1 - {x^2}} } \right)}^2} - {{\left( {2 - \sqrt {1 - {x^2}} } \right)}^2}} \right]\,{\rm{d}}x = 8\pi \mathop \smallint \limits_{ - {\kern 1pt} 1}^1 \sqrt {1 - {x^2}} \,{\rm{d}}x.\]

Đặt\[x = \sin t \Leftrightarrow {\rm{d}}x = \cos t\,{\rm{d}}t\] và đổi cận\(\left\{ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow t = - \frac{\pi }{2}}\\{x = 1 \Rightarrow t = \frac{\pi }{2}}\end{array}} \right.\)

Khi đó

\[\;V = 8\pi \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sqrt {co{s^2}t} } .costdt = 4\pi \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {(1 + cos2t)dt = 4\pi \left( {t + \frac{1}{2}sin2t} \right)} \left| {_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} = 4{\pi ^2}} \right.\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \[y = \sqrt x ,y = 0\;\] và x=4 quanh trục Ox . Đường thẳng \[x = a(0 < a < 4)\;\] cắt đồ thị hàm số \[y = \sqrt x \;\] tại M (hình vẽ bên).

Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường (ảnh 1)

Xem đáp án » 28/06/2022 2,193

Câu 2:

Cho hình (H) giới hạn bởi đồ thị hàm số y=f(x) , trục hoành và hai đường thẳng x=a,x=b. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Ox là:

Xem đáp án » 28/06/2022 1,992

Câu 3:

Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường  \[y = \sqrt {2 - x} ;y = x\] xung quanh trục Ox được tính theo công thức nào sau đây?

Xem đáp án » 28/06/2022 1,385

Câu 4:

Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh Ox của hình giới hạn bởi trục Ox và parabol \[(P):y = {x^2} - ax(a > 0)\;\]bằng V=2. Khẳng định nào dưới đây đúng ?

Xem đáp án » 28/06/2022 859

Câu 5:

Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi đường \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\]quay quanh Oy?

Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi đường  (ảnh 1)

Xem đáp án » 28/06/2022 662

Câu 6:

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=1 và x=3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \[x\;(1 \le x \le 3)\] thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và \[\sqrt {3{x^2} - 2.} \]

Xem đáp án » 28/06/2022 543

Câu 7:

Gọi (D1) là hình phẳng giới hạn bởi các đường \[y = 2\sqrt x ,y = 0\;{\rm{ }}v\`a \;x = 2020,\], (D2) là hình phẳng giới hạn bởi các đường \[y = \sqrt {3x} ,y = 0\] và \[x = 2020.\]. Gọi V1,V2 lần lượt là thể tích khối tròn xoay tạo thành khi quay (D1)  và (D2) xung quanh trục Ox. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng:

Xem đáp án » 28/06/2022 518

Bình luận


Bình luận