Câu hỏi:
30/06/2022 86Trong không gian tọa độ Oxyz cho \[d:\frac{{x - 1}}{{ - 3}} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 2}}\] và mặt phẳng \[\left( P \right):x - 3y + z - 4 = 0\]. Phương trình hình chiếu của d trên (P) là:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đường thẳng d đi qua A(1;3;1) và có VTCP\[\overrightarrow {{u_d}} = \left( { - 3;2; - 2} \right)\]
Mặt phẳng (Q) chứa d và vuông góc với (P) nên \[\overrightarrow {{n_Q}} = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right]\]
Ta có:\[\overrightarrow {{n_P}} = \left( {1; - 3;1} \right)\] và\[\overrightarrow {{u_d}} = \left( { - 3;2; - 2} \right) \Rightarrow \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {4; - 1; - 7} \right)\]
Mặt phẳng (Q) đi qua A(1;3;1) và nhận\[\overrightarrow {{n_Q}} = \left( {4; - 1; - 7} \right)\]làm VTPT nên
\[\left( Q \right):4\left( {x - 1} \right) - \left( {y - 3} \right) - 7\left( {z - 1} \right) = 0 \Leftrightarrow 4x - y - 7z + 6 = 0\]
Đường thẳng cần tìm là giao tuyến của (P),(Q).
Dễ thấy điểm (0;−1;1) thuộc cả hai mặt phẳng và\[\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] = \left( {2;1;1} \right)\]
Do đó d′ đi qua A(0;−1;1) và có VTCP\[\overrightarrow {{u_{d'}}} = \left( {2;1;1} \right)\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)
Tính a+b+c.
Câu 3:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:
Câu 4:
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).
Câu 5:
Trong không gian với hệ tọa độ Oxyz, điểm A′(a;b;c) đối xứng với điểm A(−1;0;3) qua mặt phẳng (P):x+3y−2z−7=0. Tìm a+b+c
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x−y−z−1=0 và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\]. Phương trình đường thẳng Δ qua A(1;1;−2) vuông góc với d và song song với (P) là:
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:
về câu hỏi!