Giải SGK Toán 11 KNTT Bài 27. Thể tích có đáp án
78 người thi tuần này 4.6 489 lượt thi 13 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Thể tích của căn phòng là: V = 4 × 5 × 3 = 60 (m3).
Vì mỗi mét khối của phòng cần công suất điều hòa 200 BTU nên căn phòng cần điều hòa có công suất là: 60 × 200 = 12 000 (BTU).
Vậy bác An cần mua loại điều hòa có công suất là 12 000 BTU.
Lời giải

Gọi O là giao điểm của AC và BD. Vì S.ABCD là hình chóp đều nên SO ^ (ABCD).
Xét tam giác BCD vuông tại C, có .
Vì ABCD là hình vuông nên O là trung điểm của BD, suy ra .
Xét tam giác SOB vuông tại O, có .
Ta có . .
Lời giải
a) Ta có ; .
Khi đó
.
Lời giải
b) Vì ABC.A'B'C' là khối chóp cụt đều nên (ABC) // (A'B'C') mà (AB1C1) Ì (ABC) nên (AB1C1) // (A'B'C').
Xét tam giác ABC có B1, C1 lần lượt là trung điểm của AB, AC nên B1C1 là đường trung bình của tam giác ABC do đó B1C1 // BC và .
Lại có B'C' // BC nên B1C1 // B'C' và B'C' = B1C1 = a nên B1C1C'B' là hình bình hành.
Vì B1, C1 lần lượt là trung điểm của AB, AC nên AB1 = AC1 = a.
Vì A'B' // AB1 và A'B' = AB1 = a nên A'B'B1A là hình bình hành.
Vì A'C' // AC1 và A'C' = AC1 = a nên A'C'C1A là hình bình hành.
Do đó AB1C1.A'B'C' là hình lăng trụ.
Vì hình lăng trụ AB1C1.A'B'C' có cùng chiều cao với khối chóp cụt đều ABC.A'B'C' nên .
Lời giải

Sọt đựng đồ có dạng hình chóp cụt đều ABCD.A'B'C'D'.
Ta có S1 = SABCD = 602 = 3 600(cm2), S2 = SA'B'C'D' = 302 = 900 (cm2).
Kẻ D'H ^ BD tại H.
Gọi O và O' lần lượt là tâm của hình vuông ABCD và A'B'C'D'.
Vì OO' ^ (ABCD) nên OO' ^ OH, OO' ^ (A'B'C'D') nên OO' ^ B'D'.
Do đó OHD'O' là hình chữ nhật, suy ra O'D' = OH, OO' = HD'.
Xét tam giác B'C'D' vuông tại C', có
(cm).
Vì O' là trung điểm của B'D' nên (cm).
Xét tam giác BCD vuông tại C, có
(cm).
Mà O là trung điểm của BD nên (cm).
Có HD = DO – OH = (cm).
Xét tam giác DHD' vuông tại H, có
(cm).
Do đó (cm).
(cm3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
98 Đánh giá
50%
40%
0%
0%
0%