Câu hỏi:
25/05/2022 252Trong khoảng \[\left( {0\,\,;\,\,\frac{\pi }{2}} \right)\]phương trình \[si{n^2}4x + 3sin4xcos4x - 4co{s^2}4x = 0\;\] có:
Quảng cáo
Trả lời:
Trường hợp 1:\[\cos 4x = 0 \Leftrightarrow 4x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right)\]
Khi đó\[{\sin ^2}4x = 1\]
Thay vào phương trình ta có:\[1 + 3.0 - 4.0 = 0 \Leftrightarrow 1 = 0\,\,\left( {V\^o \,\,l\'y } \right)\]
\[ \Rightarrow x = \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right)\] không là nghiệm của phương trình.
Trường hợp 2:\[\cos 4x \ne 0 \Leftrightarrow x \ne \frac{\pi }{8} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right)\]
Chia cả 2 vế của phương trình cho \[{\cos ^2}4x\] ta được:
\[\frac{{{{\sin }^2}4x}}{{{{\cos }^2}4x}} + 3\frac{{\sin 4x}}{{\cos 4x}} - 4 = 0 \Leftrightarrow {\tan ^2}4x + 3\tan 4x - 4 = 0\]
Đặt tan4x=t. Khi đó phương trình trở thành
\[{t^2} + 3t - 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 1}\\{t = - 4}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{tan4x = 1}\\{tan4x = - 4}\end{array}} \right.\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x = \frac{\pi }{4} + k\pi }\\{4x = arctan( - 4) + k\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}}\\{x = \frac{1}{4}arctan( - 4) + \frac{{k\pi }}{4}}\end{array}} \right.(k \in Z)\)
Xét nghiệm\[x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right),\,x \in \left( {0;\frac{\pi }{2}} \right)\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < \frac{\pi }{{16}} + \frac{{k\pi }}{4} < \frac{\pi }{2}}\\{k \in Z}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < \frac{1}{{16}} + \frac{k}{4} < \frac{1}{2}}\\{k \in Z}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - \frac{1}{4} < k < \frac{7}{4}}\\{k \in Z}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = 0}\\{k = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{\pi }{{16}}}\\{x = \frac{{5\pi }}{{16}}}\end{array}} \right.\)
Xét nghiệm\[x = \frac{1}{4}\arctan \left( { - 4} \right) + \frac{{k\pi }}{4}\,\,\left( {k \in Z} \right);\,\,x \in \left( {0;\frac{\pi }{2}} \right)\]
\(\left\{ {\begin{array}{*{20}{c}}{0 < \frac{1}{4}arctan( - 4) + \frac{{k\pi }}{4} < \frac{\pi }{2}}\\{k \in Z}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - \frac{1}{4}arctan( - 4) < \frac{{k\pi }}{4} < \frac{\pi }{2} - \frac{1}{4}arctan( - 4)}\\{k \in Z}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0,42 < k < 2,42}\\{k \in Z}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{k = 1}\\{k = 2}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{4}arctan( - 4) + \frac{\pi }{4}}\\{x = \frac{1}{4}arctan( - 4) + \frac{\pi }{2}}\end{array}} \right.\)
Vậy phương trình có 4 nghiệm thuộc khoảng\[\left( {0\,\,;\,\,\frac{\pi }{2}} \right)\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[4{\sin ^2}x - 4\sin x - 3 = 0\]
Đặt\[\sin x = t\,\,\left( { - 1 \le t \le 1} \right)\]khi đó phương trình có dạng:
\[4{t^2} - 4t - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = \frac{3}{2}(ktm)}\\{t = - \frac{1}{2}(tm)}\end{array}} \right.\]
\[t = - \frac{1}{2} \Leftrightarrow sinx = - \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{6} + k2\pi }\\{x = - \frac{{7\pi }}{6} + k2\pi }\end{array}} \right.(k \in Z)\]
Vây số vị trí biểu diễn các nghiệm của phương trình\[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là 2 điểm như hình trên.
Đáp án cần chọn là: C
Lời giải
Bước 1:
\[\sin x + \sqrt 3 \cos x = \sqrt 2 \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{{\sqrt 2 }}{2}\]
\[\Leftrightarrow \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = \frac{{\sqrt 2 }}{2} \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \frac{\pi }{4}\]
Bước 2:
\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\\{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{{12}} + k2\pi }\\{x = \frac{{5\pi }}{{12}} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\alpha = - \frac{\pi }{{12}}}\\{\beta = \frac{{5\pi }}{{12}}}\end{array}} \right.\)
(Vì\[ - \frac{\pi }{{12}}\] và\[\frac{{5\pi }}{{12}}\] đều thỏa mãn điều kiện đề bài)
\[ \Rightarrow \alpha .\beta \; = \frac{{ - 5{\pi ^2}}}{{144}}\]
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)