Câu hỏi:

25/05/2022 419

Giải phương trình \[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]

\[ \Leftrightarrow \frac{1}{2}cosx(cos2x + cosx) + \frac{1}{2}sinx(cos2x - cosx) = \frac{1}{2}\]

\[ \Leftrightarrow cosxcos2x + co{s^2}x + sinxcos2x - sinxcosx = 1\]

\[ \Leftrightarrow cos2x(sinx + cosx) - sinxcosx + co{s^2}x - 1 = 0\]

\[ \Leftrightarrow cos2x(sinx + cosx) - sinxcosx - si{n^2}x = 0\]

\[ \Leftrightarrow cos2x(sinx + cosx) - sinx(sinx + cosx) = 0\]

\[ \Leftrightarrow (sinx + cosx)(cos2x - sinx) = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx + cosx = 0}\\{cos2x - sinx = 0}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = - cosx}\\{1 - 2si{n^2}x - sinx = 0}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{tanx = - 1}\\{sinx = \frac{1}{2}}\\{sinx = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{4} + k\pi }\\{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\\{x = - \frac{\pi }{2} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)

Vậy nghiệm của phương trình đã cho là: \[x = - \frac{\pi }{4} + k\pi ;\,\,x = \frac{\pi }{6} + k2\pi ;x = \frac{{5\pi }}{6} + k2\pi ;\,\,x = - \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[4{\sin ^2}x - 4\sin x - 3 = 0\]

Đặt\[\sin x = t\,\,\left( { - 1 \le t \le 1} \right)\]khi đó phương trình có dạng:

\[4{t^2} - 4t - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = \frac{3}{2}(ktm)}\\{t = - \frac{1}{2}(tm)}\end{array}} \right.\]

\[t = - \frac{1}{2} \Leftrightarrow sinx = - \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{6} + k2\pi }\\{x = - \frac{{7\pi }}{6} + k2\pi }\end{array}} \right.(k \in Z)\]

 Số vị trí biểu diễn các nghiệm của phương trình (ảnh 1)

Vây số vị trí biểu diễn các nghiệm của phương trình\[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là 2 điểm như hình trên.

Đáp án cần chọn là: C

Lời giải

Bước 1:

\[\sin x + \sqrt 3 \cos x = \sqrt 2 \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{{\sqrt 2 }}{2}\]

\[\Leftrightarrow \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = \frac{{\sqrt 2 }}{2} \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \frac{\pi }{4}\]

Bước 2:

\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\\{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{{12}} + k2\pi }\\{x = \frac{{5\pi }}{{12}} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\alpha = - \frac{\pi }{{12}}}\\{\beta = \frac{{5\pi }}{{12}}}\end{array}} \right.\)

(Vì\[ - \frac{\pi }{{12}}\] và\[\frac{{5\pi }}{{12}}\] đều thỏa mãn điều kiện đề bài)

\[ \Rightarrow \alpha .\beta \; = \frac{{ - 5{\pi ^2}}}{{144}}\]

Đáp án cần chọn là: B

Câu 3

Với giá trị nào của m thì phương trình \[\left( {1 - m} \right){\tan ^2}x - \frac{2}{{\cos x}} + 1 + 3m = 0\]có nhiều hơn 1 nghiệm trên \[(0;\frac{\pi }{2})\;\]?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Phương trình \[\sin 2x + 3\sin 4x = 0\] có nghiệm là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số phải thỏa mãn điều kiện:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay