Câu hỏi:
25/05/2022 148Giải phương trình \[\cos 2x + \cos 4x + \cos 6x = \cos x\cos 2x\cos 3x + 2\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[cos2x + cos4x + cos6x = cosxcos2xcos3x + 2\]
\[ \Leftrightarrow 2cos4xcos2x + cos4x = \frac{1}{2}cos2x(cos4x + cos2x) + 2\]
\[ \Leftrightarrow 2cos4xcos2x + cos4x = \frac{1}{2}cos2xcos4x + \frac{1}{2}co{s^2}2x + 2\]
\[ \Leftrightarrow \frac{3}{2}cos4xcos2x + cos4x = \frac{1}{2}co{s^2}2x + 2\]
\[ \Leftrightarrow 3cos4xcos2x + 2cos4x = co{s^2}2x + 4\]
\[ \Leftrightarrow 3(2co{s^2}2x - 1)cos2x + 2(2co{s^2}2x - 1) = co{s^2}2x + 4\]
\[ \Leftrightarrow 6co{s^3}2x - 3cos2x + 4co{s^2}2x - 2 = co{s^2}2x + 4\]
\[ \Leftrightarrow 6co{s^3}2x + 3co{s^2}2x - 3cos2x - 6 = 0\]
\[ \Leftrightarrow 2co{s^3}2x + co{s^2}2x - cos2x - 2 = 0\]
\[ \Leftrightarrow 2(co{s^3}2x - 1) + cos2x(cos2x - 1) = 0\]
\[ \Leftrightarrow 2(cos2x - 1)(co{s^2}2x + cos2x + 1) + cos2x(cos2x - 1) = 0\]
\[ \Leftrightarrow (cos2x - 1)(2co{s^2}2x + 2cos2x + 2 + cos2x) = 0\]
\[ \Leftrightarrow (cos2x - 1)(2co{s^2}2x + 3cos2x + 2) = 0\]
\[ \Leftrightarrow cos2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi (k \in \mathbb{Z})\]
Vậy nghiệm của phương trình đã cho là: \[x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:
Câu 2:
Phương trình \[\sin x + \sqrt 3 \cos x = \sqrt 2 \] có hai họ nghiệm có dạng \[x = \alpha + k2\pi ,x = \beta + k2\pi ,\]\[( - \frac{\pi }{2} < \alpha < \beta < \frac{\pi }{2})\;\]. Khi đó \[\alpha .\beta \;\] là:
Câu 3:
Với giá trị nào của m thì phương trình \[\left( {1 - m} \right){\tan ^2}x - \frac{2}{{\cos x}} + 1 + 3m = 0\]có nhiều hơn 1 nghiệm trên \[(0;\frac{\pi }{2})\;\]?
Câu 5:
Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?
Câu 6:
Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?
Câu 7:
Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số a phải thỏa mãn điều kiện:
về câu hỏi!