Câu hỏi:

25/05/2022 327

Giải phương trình \[8\sin x = \frac{{\sqrt 3 }}{{\cos x}} + \frac{1}{{\sin x}}\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

ĐKXĐ: \(\left\{ {\begin{array}{*{20}{c}}{sinx \ne 0}\\{cosx \ne 0}\end{array}} \right. \Leftrightarrow sin2x \ne 0 \Leftrightarrow x \ne \frac{{k\pi }}{2}\)

\[8\sin x = \frac{{\sqrt 3 }}{{\cos x}} + \frac{1}{{\sin x}}\]

\[ \Leftrightarrow 8si{n^2}xcosx = \sqrt 3 sinx + cosx\]

\[ \Leftrightarrow 4sinxsin2x = \sqrt 3 sinx + cosx\]

\[ \Leftrightarrow - 2(cos3x - cosx) = \sqrt 3 sinx + cosx\]

\[ \Leftrightarrow - 2cos3x + 2cosx = \sqrt 3 sinx + cosx\]

\[ \Leftrightarrow cosx - \sqrt 3 sinx = 2cos3x\]

\[ \Leftrightarrow \frac{1}{2}cosx - \frac{{\sqrt 3 }}{2}sinx = cos3x\]

\[ \Leftrightarrow cosxcos\frac{\pi }{3} - sinxsin\frac{\pi }{3} = cos3x\]

\[ \Leftrightarrow cos(x + \frac{\pi }{3}) = cos3x\]

\(\left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{3} = 3x + k2\pi }\\{x + \frac{\pi }{3} = - 3x + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k\pi }\\{x = - \frac{\pi }{{12}} + \frac{{k\pi }}{2}}\end{array}} \right.(k \in \mathbb{Z})(tm)\)

Vậy nghiệm của phương trình đã cho là:\[x = \frac{\pi }{6} + k\pi ;\,\,x = - \frac{\pi }{{12}} + \frac{{k\pi }}{2}\,\,\left( {k \in \mathbb{Z}} \right)\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[4{\sin ^2}x - 4\sin x - 3 = 0\]

Đặt\[\sin x = t\,\,\left( { - 1 \le t \le 1} \right)\]khi đó phương trình có dạng:

\[4{t^2} - 4t - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = \frac{3}{2}(ktm)}\\{t = - \frac{1}{2}(tm)}\end{array}} \right.\]

\[t = - \frac{1}{2} \Leftrightarrow sinx = - \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{6} + k2\pi }\\{x = - \frac{{7\pi }}{6} + k2\pi }\end{array}} \right.(k \in Z)\]

 Số vị trí biểu diễn các nghiệm của phương trình (ảnh 1)

Vây số vị trí biểu diễn các nghiệm của phương trình\[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là 2 điểm như hình trên.

Đáp án cần chọn là: C

Lời giải

Bước 1:

\[\sin x + \sqrt 3 \cos x = \sqrt 2 \Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{{\sqrt 2 }}{2}\]

\[\Leftrightarrow \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = \frac{{\sqrt 2 }}{2} \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \frac{\pi }{4}\]

Bước 2:

\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\\{x + \frac{\pi }{3} = \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{{12}} + k2\pi }\\{x = \frac{{5\pi }}{{12}} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\alpha = - \frac{\pi }{{12}}}\\{\beta = \frac{{5\pi }}{{12}}}\end{array}} \right.\)

(Vì\[ - \frac{\pi }{{12}}\] và\[\frac{{5\pi }}{{12}}\] đều thỏa mãn điều kiện đề bài)

\[ \Rightarrow \alpha .\beta \; = \frac{{ - 5{\pi ^2}}}{{144}}\]

Đáp án cần chọn là: B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP