5 câu Trắc nghiệm Toán 10 Cánh diều Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Phần 2) có đáp án (Vận dụng)
25 người thi tuần này 4.6 1.7 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Ta có số trung bình cộng:
\(\begin{array}{l}\overline x = \frac{{11.1 + 16.1 + 17.1 + 19.1 + 20.1 + 21.1 + 22.1 + 23.2 + 24.1 + 25.1}}{{11}}\\ = 20,09\end{array}\)
Phương sai:
\(\begin{array}{l}{s^2} = \frac{{{n_1}{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_n}{{\left( {{x_n} - \overline x } \right)}^2}}}{n}\\ = \frac{{1{{\left( {11 - 20,09} \right)}^2} + 1{{\left( {16 - 20,09} \right)}^2} + .... + 1{{\left( {25 - 20,09} \right)}^2}}}{{11}}\\ = 15,537\end{array}\)
Độ lệch chuẩn: \(s = \sqrt {{s^2}} = \sqrt {15,537} = 3,942\).
Câu 2
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A
Bảng số liệu trên có n = 13 + 45 + 126 + 125 + 110 + 40 + 12 = 471
Ta có số trung bình cộng:
\(\begin{array}{l}\overline x = \frac{{36.13 + 37.45 + 38.126 + 39.125 + 40.110 + 41.40 + 42.12}}{{471}}\\ = 38,939\end{array}\)
Phương sai:
\(\begin{array}{l}{s^2} = \frac{{{n_1}{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_n}{{\left( {{x_n} - \overline x } \right)}^2}}}{n}\theta \\ = \frac{{13{{\left( {36 - 38,939} \right)}^2} + 45{{\left( {37 - 38,939} \right)}^2} + .... + 12{{\left( {42 - 38,939} \right)}^2}}}{{11}}\\ = 0,481\end{array}\)
Độ lệch chuẩn: \(s = \sqrt {{s^2}} = \sqrt {0,481} = 0,694\).
Câu 3
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Mẫu số liệu có n = 11
Sắp xếp mẫu số liệu theo thứ tự không giảm ta có:
11; 16; 17; 19; 20; 21; 22; 23; 23; 24; 25
Các tứ phân vị là: Q2 = 21; Q1 = 17; Q3 = 23
Khoảng tứ phân vị là: ΔQ = Q3 – Q1 = 23 – 17 = 6 (tạ)
Ta có: \({Q_1} - \frac{3}{2}{\Delta _Q} = 17 - \frac{3}{2}.6 = 8\); \({Q_3} + \frac{3}{2}{\Delta _Q} = 23 + \frac{3}{2}.6 = 32\)
Vậy không có giá trị nào bất thường trong mẫu số liệu trên (do không có giá trị nào nhỏ hơn 8 hoặc lớn hơn 32).
Câu 4
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Mẫu số liệu có n = 8
Sắp xếp mẫu số liệu theo thứ tự không giảm ta có:
6; 7; 8; 14; 23; 34; 65; 120
Các tứ phân vị là:
Q2 = (14 + 23) : 2 = 18,5; Q1 = (7 + 8) : 2 = 7,5; Q3 = (34 + 65) : 2 = 49,5
Khoảng tứ phân vị là: ΔQ = Q3 – Q1 = 49,5 – 7,5 = 42
Ta có: \({Q_1} - \frac{3}{2}{\Delta _Q} = 7,5 - \frac{3}{2}.42 = - 55,5\); \({Q_3} + \frac{3}{2}{\Delta _Q} = 49,5 + \frac{3}{2}.42 = 112,5\)
Vậy giá trị bất thường là 120 (do lớn hơn 112,5).
Câu 5
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
Xét mẫu số liệu của Lan:
\(\overline {{x_L}} = \frac{{7.2 + 8.1 + 9.1 + 10.1}}{5} = 8,2\)
\({s_L}^2 = \frac{{2.{{(7 - 8,2)}^2} + {{(8 - 8,2)}^2} + {{(9 - 8,2)}^2} + {{(10 - 8,2)}^2}}}{5} = 1,36\)
Xét mẫu số liệu của Hoa:
\(\overline {{x_H}} = \frac{{6.1 + 7.1 + 9.2 + 10.1}}{5} = 8,2\)
\({s_H}^2 = \frac{{{{(6 - 8,2)}^2} + {{(7 - 8,2)}^2} + 2{{(9 - 8,2)}^2} + {{(10 - 8,2)}^2}}}{5} = 2,16\)
Do \(\overline {{x_L}} = \overline {{x_H}} \) mà sH2 > sL2 nên bạn Lan có kết quả kiểm tra đồng đều hơn.
