5 câu Trắc nghiệm Toán 10 Cánh diều Tọa độ của vectơ (Phần 2) có đáp án (Vận dụng)
21 người thi tuần này 4.6 1.6 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
100 câu trắc nghiệm Mệnh đề - Tập hợp nâng cao (P1)
7 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề (Nhận biết) có đáp án
15 câu Trắc nghiệm Toán 10 Cánh diều Mệnh đề toán học có đáp án
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Mệnh đề có đáp án
10 Bài tập Giải toán bằng biểu đồ Ven (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có \(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 3 = 5m - 3\\2m = {m^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m + 6 = 0\\{m^2} - 2m = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 3\\m = 2\end{array} \right.\\\left[ \begin{array}{l}m = 0\\m = 2\end{array} \right.\end{array} \right.\)
⇔ m = 2.
Suy ra m ∈ {2}.
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Gọi C(xC; yC).
Ta có: \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right) = \left( {3;9} \right)\) và \(\overrightarrow {BC} = \left( {{x_C} - {x_B};{y_C} - {y_B}} \right) = \left( {{x_C} - 7;{y_C} - 8} \right)\).
Ta có C là điểm đối xứng của A qua B.
Suy ra B là trung điểm của AC.
Do đó \(\overrightarrow {AB} = \overrightarrow {BC} \).
\( \Leftrightarrow \left\{ \begin{array}{l}3 = {x_C} - 7\\9 = {y_C} - 8\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 10\\{y_C} = 17\end{array} \right.\)
Suy ra tọa độ C(10; 17).
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có:
⦁ O(0; 0). Suy ra \(\overrightarrow {OB} = \left( {2;4} \right)\);
⦁ Gọi M(xM; yM). Suy ra \(\overrightarrow {AM} = \left( {{x_M} - 1;{y_M} + 1} \right)\).
Ta có tứ giác OBMA là hình bình hành.
\( \Leftrightarrow \overrightarrow {AM} = \overrightarrow {OB} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_M} - 1 = 2\\{y_M} + 1 = 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_M} = 3\\{y_M} = 3\end{array} \right.\)
Suy ra tọa độ M(3; 3).
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi A(xA; yA), B(xB; yB), C(xC; yC).
Ta có: \(\overrightarrow {AD} = \left( {3 - {x_A};4 - {y_A}} \right)\) và \(\overrightarrow {DB} = \left( {{x_B} - 3;{y_B} - 4} \right)\).
Ta có D là trung điểm của AB.
Suy ra \(\overrightarrow {AD} = \overrightarrow {DB} \)
Khi đó \(\left\{ \begin{array}{l}3 - {x_A} = {x_B} - 3\\4 - {y_A} = {y_B} - 4\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l}{x_A} + {x_B} = 6\,\,\,\,\left( 1 \right)\\{y_A} + {y_B} = 8\,\,\,\,\left( 2 \right)\end{array} \right.\)
Tương tự, ta được \(\left\{ \begin{array}{l}{x_B} + {x_C} = 12\,\,\,\,\left( 3 \right)\\{y_B} + {y_C} = 2\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\) và \(\left\{ \begin{array}{l}{x_A} + {x_C} = 14\,\,\,\,\left( 5 \right)\\{y_A} + {y_C} = 6\,\,\,\,\,\,\left( 6 \right)\end{array} \right.\)
Từ (2), (4), (6), ta có hệ phương trình: \(\left\{ \begin{array}{l}{y_A} + {y_B} = 8\\{y_B} + {y_C} = 2\\{y_A} + {y_C} = 6\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{y_A} = 6\\{y_B} = 2\\{y_C} = 0\end{array} \right.\)
Vì vậy tổng tung độ ba đỉnh của tam giác ABC là: 6 + 2 + 0 = 8.
Do đó ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Gọi E(a; b) là trung điểm của AC.
Suy ra \(\overrightarrow {AE} = \overrightarrow {EC} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_E} - {x_A} = {x_C} - {x_E}\\{y_E} - {y_A} = {y_C} - {y_E}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_E} - 0 = - 6 - {x_E}\\{y_E} - \left( { - 1} \right) = 5 - {y_E}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2{x_E} = - 6\\2{y_E} = 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 3\\{y_E} = 2\end{array} \right.\)
Suy ra E(–3; 2).
Gọi D(xD; yD).
Ta có AE = \(\frac{1}{2}AC\) = DB.
Ta có AE // DB (giả thiết) và AE = DB (chứng minh trên).
Suy ra \(\overrightarrow {DB} = \overrightarrow {AE} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} - {x_D} = {x_E} - {x_A}\\{y_B} - {y_D} = {y_E} - {y_A}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}1 - {x_D} = - 3 - 0\\4 - {y_D} = 2 - \left( { - 1} \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 4\\{y_D} = 1\end{array} \right.\)
Suy ra D(4; 1).
Vậy ta chọn phương án B.