Đề kiểm tra Toán 11 Chân trời sáng tạo Chương 2 có đáp án - Đề 2
19 người thi tuần này 4.6 144 lượt thi 11 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Câu 1
\({u_5} = \frac{{17}}{{12}}\).
\({u_5} = \frac{7}{4}\).
\({u_5} = \frac{1}{4}\).
\({u_5} = \frac{{71}}{{39}}\).
Lời giải
Ta có \({u_5} = \frac{{2 \cdot {5^2} - 1}}{{{5^2} + 3}} = \frac{7}{4}\). Chọn B.
Câu 2
\({u_n} = \frac{n}{{{n^2} + 1}},\forall n \in {\mathbb{N}^*}\).
\({u_n} = {\left( { - 1} \right)^{n + 1}}\sin n,\forall n \in {\mathbb{N}^*}\).
\({u_n} = {\left( { - 1} \right)^{2n}}\left( {{5^n} + 1} \right),\forall n \in {\mathbb{N}^*}\).
\({u_n} = \frac{1}{{n + 2}},\forall n \in {\mathbb{N}^*}\).
Lời giải
Ta có \({u_n} = {\left( { - 1} \right)^{2n}}\left( {{5^n} + 1} \right) = {5^n} + 1,\forall n \in {\mathbb{N}^*}\).
Xét \({u_{n + 1}} - {u_n} = {5^{n + 1}} + 1 - \left( {{5^n} + 1} \right) = 4 \cdot {5^n} > 0\).
Do đó \({u_n} = {\left( { - 1} \right)^{2n}}\left( {{5^n} + 1} \right),\forall n \in {\mathbb{N}^*}\) là dãy số tăng. Chọn C.
Lời giải
Có \(\left\{ \begin{array}{l}{u_2} = 3\\{u_4} = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d = 3\\{u_1} + 3d = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 2\end{array} \right.\).
Khi đó \({u_{15}} = {u_1} + 14d = 1 + 14 \cdot 2 = 29\). Chọn C.
Câu 4
\(q = 3;q = - 3\).
\(q = - 3\).
\(q = - 2\).
\(q = 3\).
Lời giải
Ta có \({u_5} = {u_1}{q^4}\)\( \Leftrightarrow - 162 = - 2{q^4}\)\( \Leftrightarrow {q^4} = 81\)\( \Leftrightarrow q = \pm 3\). Chọn A.
Câu 5
\({u_3} = - 2\).
\({u_3} = 5\).
\({u_3} = 3\).
\({u_3} = 1\).
Lời giải
\(\left\{ \begin{array}{l}{u_3} + {u_4} + {u_5} = - 3\\3{u_5} - 2{u_7} = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}3{u_3} + 3d = - 3\\{u_3} - 2d = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_3} = 1\\d = - 2\end{array} \right.\). Chọn D.
Câu 6
\({u_n} = 5n\).
\({u_n} = 1 + 4n\).
\({u_n} = 3 + 2n\).
\({u_n} = 2 + 3n\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Công bội của cấp số nhân \(q = 3\).
Công thức số hạng tổng quát của cấp số nhân \({u_n} = 9 \cdot {2^{n - 1}}\).
Số 576 là số hạng thứ 6 của cấp số nhân.
Tổng của 9 số hạng đầu tiên bằng 4599.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.