8 câu Trắc nghiệm Toán 10 Cánh diều Bất phương trình bậc hai một ẩn có đáp án (Phần 2) (Thông hiểu)
25 người thi tuần này 4.6 1.9 K lượt thi 8 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài 27. Thực hành tính xác suất theo định nghĩa cổ điển (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Đáp án đúng là: A
Tam thức bậc hai – x2 + 6x + 7 có hai nghiệm x = – 1, x = 7 và có hệ số a = – 1 < 0.
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – x2 + 6x + 7 mang dấu “+” là (– 1; 7).
Vậy tập nghiệm của bất phương trình – x2 + 6x + 7 > 0 là S = (– 1; 7).
Câu 2
Lời giải
Đáp án đúng là: C
Ta có (x2 – 3x + 1)2 + 3x2 – 9x + 5 > 0
(x2 – 3x + 1)2 + 3(x2 – 3x + 1) + 2 > 0
Đặt x2 – 3x + 1 = t.
Khi đó ta có: t2 + 3t + 2 > 0 (*).
Giải bất phương trình (*) ta được: .
.
Vậy tập nghiệm của bất phương trình đã cho là: S = (−; 1) (2; +).
Câu 3
Lời giải
Đáp án đúng là: D
Ta có: <
−> 0
> 0
Ta có 2x – 6 = 0 có nghiệm là x = 3
Tam thức x2 – 7x + 10 có hai nghiệm là x = 2, x = 5
Tam thức x2 – 5x + 4 có hai nghiệm nghiệm là x = 1, x = 4
Ta có bảng xét dấu sau:
Vậy nghiệm của bất phương trình là: S = (1; 2) (3; 4) (5; +¥).
Câu 4
Lời giải
Đáp án đúng là: A
Vì 2x2 – 3x + 3 > 0, "x ℝ (do a = 3 > 0, ∆ = −15 < 0)
Nên:
−1 ≤ < 7
−2x2 + 3x – 2 ≤ x2 + 5x + a < 7(2x2 – 3x + 2)
Bất phương trình đã cho nghiệm đúng với mọi x Hệ trên nghiệm đúng với mọi x
VT (1) = 3x2 + 2x + a + 2 ≥ 0, "x
−5 − 3a ≤ 0 Û a ≥ (3)
VT (2) = 13x2 – 26x – a + 14 > 0, "x
−13 + 13a < 0 Û a < 1 (4)
Từ (3) và (4) ta được ≤ a < 1.
Câu 5
Lời giải
Đáp án đúng là: C
Với m = 1, ta có: −4x – 3 > 0 Û x <
Không có nghiệm đúng với mọi x ℝ
Với m ≠ 1, ta đặt f(x) = (m – 1)x2 – 2(m + 1)x + 3(m – 2)
BPT đã cho nghiệm đúng với mọi x Û f(x) > 0, "x Î ℝ
m > 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.