Bài thi đang cập nhật!

Câu hỏi:

12/07/2024 10,314

Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC.

a) Chứng minh rằng tứ giác EBFD là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. a) Chứng minh rằng tứ giác EBFD là hình bình hành.  (ảnh 1)

ABCD là hình bình hành nên AD = BC và AD // BC.

Mà E là trung điểm của AD nên AE = ED;

       F là trung điểm của BC nên BF = FC.

Suy ra DE = BF.

Xét tứ giác EBFD có DE // BF (do AD // BC) và DE = BF nên là hình bình hành (dấu hiệu nhận biết).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có D đối xứng với A qua BC nên M là trung điểm của AD và AD BC.

Tứ giác ABDC có hai đường chéo AD và BD cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

Lại có hai đường chéo AD BC nên hình bình hành ABDC là hình thoi.

Lời giải

Media VietJack
Do ABCD là hình thoi nên hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường.

Do đó OA=12AC=3cm OB=12BD=4cm.

Áp dụng định lí Pythagore vào DOAB vuông tại O, ta có:

AB2 = OA2 + OB2

Suy ra AB=OA2+OB2=32+42=5cm.

Vậy độ dài cạnh của hình thoi ABCD là 5 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP