Giải SBT Toán 11 KNTT Bài 22. Hai đường thẳng vuông góc có đáp án
61 người thi tuần này 4.6 698 lượt thi 6 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải
Lấy K là trung điểm của BC.

Xét tam giác BCD có N là trung điểm BD, K là trung điểm BC nên NK là đường trung bình. Do đó NK // CD và .
Xét tam giác ABC có M là trung điểm AC, K là trung điểm BC nên MK là đường trung bình. Do đó MK // AB và .
Có MN2 = 3a2 ; NK2 + MK2 = .
Do đó MN2 = NK2 + MK2 nên tam giác MNK là tam giác vuông tại K hay NK ^ MK.
Lại có MK // AB, NK // CD nên (AB, CD) = (MK, NK) = 90° hay AB ^ CD.
Lời giải

a) Hình chóp S.ABCD có tất cả các cạnh bằng a và đáy ABCD là hình vuông nên
SA = SB = SC = SD = AB = BC = CD = DA = a.
Xét tam giác ADB vuông tại A, có BD2 = AD2 + AB2 = a2 + a2 = 2a2.
Mà SB2 + SD2 = a2 + a2 = 2a2. Do đó SB2 + SD2 = BD2 nên tam giác SBD vuông tại S.
Vì M, N lần lượt là trung điểm của cạnh SA, AB nên MN là đường trung bình của tam giác SAB, do đó MN // SB.
Khi đó (MN, SD) = (SB, SD) = 90°.
Vì O là giao điểm của AC và BD, ABCD là hình vuông nên O là trung điểm AC, BD.
Xét tam giác SAC có M là trung điểm SA, O là trung điểm AC nên MO là đường trung bình, suy ra MO // SC.
Khi đó (MO, SB) = (SC, SB) = (do tam giác SBC là tam giác đều).
Lời giải
b) Xét tam giác ABC có O là trung điểm AC, N là trung điểm AB nên ON là đường trung bình, suy ra ON // BC.
Vì ON // BC nên (SN, BC) = (SN, ON) = .
Vì tam giác SAC có SA = SC = a nên tam giác SAC cân tại S mà SO là trung tuyến nên SO là đường cao.
Vì BD2 = 2a2 và ABCD là hình vuông nên .
Xét tam giác SOC vuông tại O, có:
SC2 = SO2 + OC2 .
Vì ON là đường trung bình của tam giác ABC nên .
Xét tam giác đều SAB có SN là trung tuyến đồng thời là đường cao hay SN ^ AB.
Xét tam giác vuông SNB vuông tại N, ta có:
SN2 + NB2 = SB2
Lại có . Do đó tam giác SON vuông tại O.
Xét tam giác vuông SON vuông tại O có .
Vậy tang của góc giữa hai đường thẳng SN và BC là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


