Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
13467 lượt thi 15 câu hỏi
Câu 1:
Các đỉnh, cạnh, mặt của một đa diện phải thỏa mãn những tính chất nào?
Tìm một hình tạo bởi các đa giác nhưng không phải là một đa diện
Câu 2:
Thế nào là một khối đa diện lồi. Tìm ví dụ trong thực tế mô tả một khối đa diện lồi, một khối đa diện không lồi.
Câu 3:
Cho hình lăng trụ và hình chóp có diện tích đáy và chiều cao bằng nhau. Tính tỉ số thể tích của chúng.
Câu 4:
Cho hình chóp tam giác O.ABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Hãy tính đường cao OH của hình chóp.
Câu 5:
Cho hình chóp tam giác đều S.ABC có cạnh AB bằng a. Các cạnh bên SA, SB, SC tạo với đáy một góc 60o. Gọi D là giao của SA với mặt phẳng qua BC và vuông góc với SA.
Tính tỉ số thể tích giữa hai khối chóp S.DBC và S.ABC.
Câu 6:
Tính thể tích của khối chóp S.DBC.
Câu 7:
Cho hình chóp tam giác S.ABC có AB = 5a, BC = 6a, CA = 7a. Các mặt bên SAB, SBC, SCA tạo với đáy một góc 60o. Tính thể tích của khối chóp đó.
Câu 8:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy và AB = a, AD=b, SA = c. Lấy các điểm B’, D’ theo thứ tự thuộc SB, SD sao cho AB’ vuông góc với SB, AD’ vuông góc với SD. Mặt phẳng (AB’D’) cắt SC tại C’. Tính thể tích khối chóp S.AB’C’D’.
Câu 9:
Cho hình chóp tứ giác đều S.ABCD . Đáy hình vuông cạnh a, cạnh bên tạo với đáy một góc 60o. Gọi M là trung điểm SC.Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF.
Câu 10:
Cho hình lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a. Tính thể tích khối tứ diện A’BB’C’.
Câu 11:
Cho hình lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a. Mặt phẳng đi qua A’B’ và trọng tâm tam giác ABC, cắt AC và BC lần lượt tại E và F. Tính thể tích hình chóp C.A’B’FE.
Câu 12:
Cho khối hộp ABCD.A’B’C’D’. Gọi E và F theo thứ tự là trung điểm của các cạnh BB’ và DD’. Mặt phẳng (CEF) chia khối hộp trên làm hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó.
Câu 13:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M là trung điểm A’B’, N là trung điểm BC.
Tính thể tích khối tứ diện ADMN
Câu 14:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M là trung điểm A’B’, N là trung điểm BC. Mặt phẳng (DMN) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A, (H’) là khối đa diện còn lại. Tính tỉ số VHVH'
2693 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com