Đăng nhập
Đăng ký
13219 lượt thi 18 câu hỏi
Câu 1:
Tìm tập hợp tâm các mặt cầu luôn luôn đi qua hai điểm cố định A và B cho trước.
Câu 2:
Hãy xác định đường tròn giao tuyến của mặt cầu S(O; r) và mặt phẳng (α) biết rằng khoảng cách từ tâm O đến (α) bằng r/2.
Câu 3:
Cho mặt cầu S(O; r), hai mặt phẳng (α) và (β) có khoảng cách đến tâm O của mặt cầu đã cho lần lượt là a và b (0 < a < b < r). Hãy so sánh hai bán kính của các đường tròn giao tuyến.
Câu 4:
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Hãy xác định tâm và bán kính mặt cầu:
Đi qua 8 đỉnh của hình lập phương.
Câu 5:
Cắt bìa theo mẫu dưới đây (h.123), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập phương và hình bát diện đều.
Câu 6:
Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Câu 7:
Tiếp xúc với 6 mặt của hình lập phương.
Câu 8:
Cho hình lập phương ngoại tiếp mặt cầu bán kính r cho trước. Hãy tính thể tích của hình lập phương đó.
Câu 9:
Tìm tập hợp tất cả các điểm M trong không gian luôn luôn nhìn một đoạn thẳng AB cố định dưới một góc vuông.
Câu 10:
Tìm tập hợp tâm các mặt cầu luôn chứa một đường tròn cố định cho trước.
Câu 11:
Tìm tập hợp tâm các mặt cầu luôn cùng tiếp xúc với ba cạnh của một tam giác cho trước.
Câu 12:
Từ một điểm M nằm ngoài mặt cầu (O; R), vẽ hai đường thẳng cắt mặt cầu lần lượt tại A, B và C, D.
Chứng minh rằng MA.MB = MC.MD
Câu 13:
Cho mặt cầu (O; R) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ hai tiếp tuyến của mặt cầu cắt (P) tại A và B. Chứng minh rằng góc (AMB)= góc (AIB)
Câu 14:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AA' = a, AB = b, AD = c.
Hãy xác định tâm và bán kính của mặt cầu đi qua 8 đỉnh của hình hộp đó.
Câu 15:
Tính bán kính của đường tròn là giao tuyến của mp(ABCD) với mặt cầu trên.
Câu 16:
Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì tổng các cặp cạnh đối diện của tứ diện bằng nhau.
Câu 17:
Cho một điểm A cố định và một đường thẳng a cố định không đi qua A. Gọi O là một điểm thay đổi trên a. Chứng minh rằng các mặt cầu tâm O bán kính r = OA luôn luôn đi qua một đường tròn cố định
Câu 18:
Cho hình chóp S.ABC có bốn đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó.
2644 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com