Danh sách câu hỏi
Có 21,779 câu hỏi trên 436 trang
Trong không gian \[Oxyz,\] cho các điểm \(A\left( {1\,;\,\,2\,;\,\, - 4} \right),\,\,B\left( {1\,;\,\, - 3\,;\,\,1} \right)\), \(C\left( {2\,;\,\,2\,;\,\,3} \right).\) Bán kính mặt cầu \((S)\) đi qua \[A,\,\,B,\,\,C\] và có tâm thuộc mặt phẳng \(\left( {Oxy} \right)\) là
Trong không gian hệ tọa độ \[Oxyz,\] cho \(A\left( {1\,;\,\,2\,;\,\, - 1} \right);\,\,B\left( { - 1\,;\,\,0\,;\,\,1} \right)\) và mặt phẳng \(\left( P \right):x + 2y - z + 1 = 0.\) Phương trình mặt phẳng \(\left( Q \right)\) qua \[A,\,\,B\] và vuông góc với \(\left( P \right)\) là
Trong không gian \[Oxyz,\] cho hai điểm \(M\left( { - 2\,;\,\,6\,;\,\,1} \right)\) và \(M'\left( {a\,;\,\,b\,;\,\,c} \right)\) đối xứng với nhau qua mặt phẳng \(\left( {Oyz} \right).\) Tính \(S = 7a - 2b + 2017c - 1.\)
Trong không gian \[Oxyz,\] cho ba điểm \[M\left( {1\,;\,\,0\,;\,\,0} \right),\,\,N\left( {0\,;\,\,2\,;\,\,0} \right),\,\,P\left( {0\,;\,\,0\,;\,\,3} \right).\] Mặt phẳng \(\left( {MNP} \right)\) có phương trình là
Các điểm \[M,\,\,N,\,\,P,\,\,Q\] trong hình vẽ bên là điểm biểu diễn lần lượt của các số phức \[{z_1},\,\,{z_2},\,\,{z_3},\,\,{z_4}.\] Khi đó số phức \(w = 3{z_1} + {z_2} + {z_3} + {z_4}\) bằng
Cho mặt phẳng \((P):x + y - 3z + 7 = 0\) và ba điểm \(A\left( {2\,;\,\, - 1\,;\,\,0} \right)\,,\)\(B\left( {0\,;\,\, - 1\,;\,\,2} \right),\)\(C\left( {2\,;\,\,3\,;\,\, - 1} \right).\) Biết điểm \(M\left( {{x_0}\,;\,\,{y_0}\,;\,\,{z_0}} \right)\) thuộc mặt phẳng \((P)\) sao cho \(M{A^2} + 3M{B^2} - 2M{C^2}\) đạt giá trị nhỏ nhất. Khi đó tổng \(T = {x_0} + 3{y_0} - 2{z_0}\) bằng bao nhiêu?
Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số \[0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7\,;\,\,8\,;\,\,9.\] Chọn ngẫu nhiên một số \(\overline {abc} \) từ \[S.\] Xác suất để số được chọn thỏa mãn \(a \le b \le c\) là
Trong không gian \[Oxyz,\] cho mặt phẳng \((P)\) cắt các tia \[Ox,\,\,Oy,\,\,Oz\] lần lượt tại ba điểm \(A\left( {1\,;\,\,0\,;\,\,0} \right),\)\(B\left( {0\,;\,\,b\,;\,\,0} \right),\)\(C\left( {0\,;\,\,0\,;\,\,c} \right).\) Biết mặt phẳng \((P)\) vuông góc với mặt phẳng \((Q):y - z + 1 = 0\) và khoảng cách từ \(O\) đến \((P)\) bằng \(\frac{1}{3}.\) Khi đó tích \[4bc\] bằng