Danh sách câu hỏi
Có 15,568 câu hỏi trên 312 trang
Lúc 7 giờ sáng một xe máy xuất phát từ Thành phố Hồ Chí Minh đi về hướng Biên Hòa với tốc độ trung bình \(40{\rm{\;km}}/\)giờ. Sau đó 15 phút, một ô tô xuất phát từ Biên Hòa đi về hướng Thành phố Hồ Chí Minh với tốc độ trung bình \(60{\rm{\;km}}/\)giờ. Biết rằng Thành phố Hồ Chí Minh cách Biên Hòa \[40{\rm{ km}}.\]
⦁ Gọi \(f\left( t \right) = at + b,\,\,\left( {t \ge 0} \right)\) là hàm số biểu diễn khoảng cách của xe máy so với Thành phố Hồ Chí Minh sau khi đi được \(t\) giờ kể từ lúc 7 giờ 15 phút.
⦁ Gọi \(g\left( t \right) = ct + d,\,\,\left( {0 \le t \le \frac{2}{3}} \right)\) là hàm số biểu diễn khoảng cách của ô tô so với Thành phố Hồ Chí Minh sau khi đi được \(t\) giờ kể từ lúc 7 giờ 15 phút.
a) Tìm các hệ số \(a,\,\,b,\,\,c,\,\,d.\)
b) Hỏi hai xe gặp nhau lúc mấy giờ và nơi gặp nhau cách Thành phố Hồ Chí Minh bao nhiêu ki-lô-mét?
Cho tam giác \(ABC\) có \(CA > CB\) và nội tiếp đường tròn tâm \(O\) đường kính \(AB.\) Các tiếp tuyến với đường tròn \(\left( O \right)\) tại \(A\) và \(C\) cắt nhau tại \(M.\) Gọi \(H\) là giao điểm của \(MO\) và \(AC.\)
1) Chứng minh rằng tứ giác \(OCMA\) nội tiếp và \(HA = HC.\)
2) Vẽ \(CK\) vuông góc với \(AB\,\,\left( {K \in AB} \right)\) và \(HE\) vuông góc với \(CK\,\,\left( {E \in CK} \right).\) Chứng minh rằng \(HE \cdot CM = HM \cdot CH\) và tâm đường tròn ngoại tiếp tam giác \(OKH\) nằm trên đường thẳng \(OC.\)
3) Chứng minh rằng ba điểm \(M,\,\,E,\,\,B\) thẳng hàng.