🔥 Đề thi HOT:
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Mệnh đề a) là mệnh đề sai vì {a} là kí hiệu tập hợp, do đó không thể viết thuộc {a; b; c; d} mà phải viết là {a} {a; b; c; d}.
b) Tập là tập không có phần tử nào nên {0}. Do đó mệnh đề b) sai.
c) Ta có {a; b; c; d} = {b; a; d; c}. Do đó mệnh đề c) đúng.
d) Tập {a; b; c} là tập con của chính nó. Do đó mệnh đề d) sai.
Lời giải
a) Với a là số thực cho trước, ta có 2a – 1 > 0 ⇔ a > > 0 hay a > 0. Do đó mệnh đề đã cho đúng.
b) Với a, b là hai số thực cho trước, ta có:
a – 2 > b
⇔ a – 2 + 2 > b + 2 (liên hệ giữa thứ tự và phép cộng)
⇔ a > b + 2
Vậy mệnh đề đã cho là mệnh đề đúng.
Lời giải
a) Sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ”, các định lí được phát biểu như sau:
B A là điều kiện đủ để có A ∪ B = A.
A ∪ B = A là điểu kiện cần để có B A.
b) Sử dụng thuật ngữ “điều kiện cần”, “điều kiện đủ”, các định lí được phát biểu như sau:
Hình bình hành ABCD có hai đường chéo vuông góc với nhau là điều kiện đủ để nó là hình thoi.
Hình bình hành ABCD là hình thoi là điều kiện cần để nó có hai đường chéo vuông góc với nhau.
Lời giải
Bằng cách sử dụng thuật ngữ “điều kiện cần và đủ”. Định lí trên được phát biểu sau:
Với mọi số thực x, điều kiện cần và đủ để là x là x + 1 .
Lời giải
a) Ta thấy rằng với x = 0 là số tự nhiên nhưng x3 = 0 = x. Do đó tồn tại giá trị của x không thỏa mãn x3 > x. Vì vậy mệnh đề đã cho là mệnh đề sai.
b) Chọn x = 1 nhưng 1 vẫn là số tự nhiên. Do đó tồn tại số nguyên là số tự nhiên. Vì vậy mệnh đề b) sai.
c) Mọi số nguyên đều là số hữu tỉ nên mệnh đề đã cho là mệnh đề đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
214 Đánh giá
50%
40%
0%
0%
0%