5 câu Trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 7 (Vận dụng) có đáp án
21 người thi tuần này 4.6 2.1 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Số trung bình cộng, số trung vị. Mốt. Phương sai và độ lệch chuẩn
25 câu Trắc nghiệm cuối năm Đại số và giả tích 10 có đáp án
15 câu Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án (Thông hiểu)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. M(3; 7);
B. M(–3; –5);
C. M(2; 5);
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Do M ∈ d nên M(t; 1 + 2t)
Theo giả thiết M cách đều hai điểm A, B nên MA = MB
⇔ =
⇔ =
⇔ t2 + 4t + 4 + 4t2 – 4t + 1 = t2 – 8t + 16 + 4t2 + 28t + 49
⇔ 5t +15 = 0
⇔ t = −3
Với t = −3 thì M(−3; −5).
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì B(x1; y1) ∈ d1 ⇒ B(– 5 – y1; y1)
Tương tự ta có: C( 7 – 2y2; y2)
Vì tam giác ABC nhận điểm G(2; 0) là trọng tâm nên
⇒
⇔
⇒
⇒
Vậy T = (− 1).5 + (−4).1= −9.
Câu 3
A. 1;
B. 16;
C. 9;
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có: 9x2 + 16y2 = 144 ⇔ . Khi đó: a = 4; b = 3; c = .
⇒ F1 (−;0); F2 (; 0); F1F2 = 2c = 2; MF1 + MF2 = 8
Áp dụng định lí cosin trong tam giác MF1F2 ta có:
F1F22 = MF12 + MF22 − 2MF1. MF2. cos
⇔ 28 = MF12 + MF22 − 2MF1. MF2. cos60º
⇔ 28 = MF12 + MF22 − MF1. MF2
⇔ MF12 + MF22 + 2MF1. MF2 − 3MF1. MF2 = 28
⇔ (MF1 + MF2)2 − 3MF1. MF2 = 28
⇔ 64 − 3MF1. MF2 = 28
⇔ MF1. MF2 = 12.
Câu 4
A. m = 1;
B. m = 7;
C. m = 6;
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi A là giao điểm của đường thẳng d1 và d2 nên toạ độ điểm A thoả mãn:
⇒ A(1; –1)
Ba đường thẳng đã cho đồng quy khi và chỉ khi d3 cũng đi qua điểm A hay A ∈ d3
⇒ m.1 – (–1) – 7 = 0
⇔ m = 6.
Vậy với m = 6 thì ba đường thẳng đã cho đồng quy.
Câu 5
A. M (– 1; 4) hoặc M(1; – 4);
B. M (1; 2) hoặc M(1; – 2);
C. M (1; 4) hoặc M(– 1; 4);
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của (P) có dạng: y2 = 2px (p > 0)
Vì (P) có đường chuẩn ∆ : x + 4 = 0 hay x = −4 ⇒ ⇔ p = 8
Do đó phương trình chính tắc của (P) là: y2 = 16x
Gọi M(x0; y0). Vì M thuộc (P) nên ta có:
d(M; ∆) = MF = 5
⇔
⇔
⇔
⇔
Với x0 = – 9 ta có: y02 = 16 .(– 9) = – 144 (vô lí)
Với x0 = 1 ta có: y02 = 16.1 = 16 ⇔
Vậy M (1; 4) hoặc M(1; – 4).