Bài 1: Hình hộp chữ nhật
31 người thi tuần này 4.6 17 K lượt thi 5 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
- Các mặt: ABCD, A'B'C'D', ABB'A', CDD'C', ADD'A', BCC'B'
- Các đỉnh: A, B, C, D, A', B', C', D'
- Các cạnh: AB, BC, CD, DA, A'B', B'C', C'D', D'A', AA', BB', CC', DD'
Lời giải
Trong hình hộp chữ nhật ABCD.MNPQ những cạnh bằng nhau là:
AB = CD = PQ = MN
AD = QM = PN = CB
DQ = AM = BN = CP
Lời giải
Với hình hộp chữ nhật ABCD.A1B1C1D1:
a) Nếu O là trung điểm của đoạn CB1 thì O cũng là trung điểm của đoạn C1B vì CBB1C1 là hình chữ nhật nên hai đường chéo cắt nhau tại trung điểm mỗi đường ( tính chất hình chữ nhật).
b) K là điểm thuộc cạnh CD thì K không thuộc cạnh BB1 vì bốn điểm C, D, B, B1 không thuộc một mặt phẳng.
Lời giải
Vì ABCD.A1B1C1D1 là hình hộp chữ nhật
⇒ DCC1D1 và CBB1C1 là hình chữ nhật.
⇒ CC1 = BB1 = 3cm
ΔDCC1 vuông tại C, áp dụng định lí Py-ta–go ta có:
DC12 = DC2 + CC12
ΔCBB1 vuông tại B, áp dụng định lí Py–ta-go ta có:
CB12= CB2 + BB12
Lời giải
Mỗi hình vuông tương ứng với một mặt của hình lập phương có 6 mặt. Đầu tiên chúng ta giữ cố định một hình vuông ở giữa để làm một mặt trong cùng của hình lập phương, sau đó di chuyển các hình vuông còn lại theo chiều mũi tên như sau để được hình lập phương: