10 Bài tập Ứng dụng hệ bất phương trình bậc nhất hai ẩn để giải bài toán kinh tế (có lời giải)
33 người thi tuần này 4.6 152 lượt thi 10 câu hỏi 45 phút
Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2 kg nguyên liệu và 30 giờ, đem lại mức lợi nhuận 40 000 đồng. Mỗi kg sản phẩm loại II cần 4 kg nguyên liệu và 15 giờ, đem lại mức lợi nhuận 30 000 đồng. Xưởng có 200 kg nguyên liệu và 1 200 giờ làm việc. Nên sản xuất mỗi loại sản phẩm bao nhiêu để có mức lợi nhuận cao nhất ?
A. 20 kg sản phẩm loại I và 40 kg sản phẩm loại II;
B. 40 kg sản phẩm loại I và 20 kg sản phẩm loại II;
C. 10 kg sản phẩm loại I và 40 kg sản phẩm loại II;
D. 20 kg sản phẩm loại I và 20 kg sản phẩm loại II.
Đáp án đúng là: A
Gọi x (x ≥ 0 (1)) là số kg loại I cần sản xuất, y (y ≥ 0 (2)) là số kg loại II cần sản xuất.
Số nguyên liệu cần dùng để sản xuất x sản phẩm loại I là: 2x
Số nguyên liệu cần dùng để sản xuất y sản phẩm loại II là: 4y
Xưởng có 200 kg nguyên liệu nên ta có: 2x + 4y ≤ 200 ⇔ x + 2y ≤ 100 ⇔ x + 2y – 100 ≤ 0 (3)
Thời gian để sản xuất x sản phẩm loại I là: 30x
Thời gian để sản xuất y sản phẩm loại II là: 15y
Xưởng có 1 200 giờ làm việc nên ta có: 30x + 15y ≤ 1200 hay 2x + y – 80 ≤ 0 (4)
Xét bất phương trình (1) và điểm A(1; 2) có:
Điểm A không nằm trên đường thẳng x = 0 và 1 ≥ 0, do đó, miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng có kể bờ x = 0 và chứa điểm A(1; 2).
Xét bất phương trình (2) và điểm B(0; 1) có:
Điểm B không nằm trên đường thẳng y = 0 và 1 ≥ 0, do đó, miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng có kể bờ y = 0 và chứa điểm B(0; 1)
Xét bất phương trình (3) và điểm (0; 0) ta có:
Điểm (0; 0) không nằm trên đường thẳng x + 2y – 100 = 0 và 0 + 2.0 – 100 = –100 < 0 nên miền nghiệm của bất phương trình (3) là nửa mặt phẳng có kể bờ x + 2y – 100 = 0 và chứa điểm (0; 0).
Xét bất phương trình (4) và điểm (0; 0) ta có:
Điểm (0; 0) không nằm trên đường thẳng 2x + y – 80 = 0 và 2.0 + 0 – 80 = –80 < 0 nên miền nghiệm của bất phương trình (4) là nửa mặt phẳng có kể bờ 2x + y – 80 = 0 và chứa điểm (0; 0)
Kết hợp miền nghiệm của các bất phương trình (1), (2), (3) và (4) là miền nghiệm thỏa mãn màu trắng trong hình vẽ:

Lợi nhuận thu lại từ x sản phẩm loại I là: 40 000x
Lợi nhuận thu lại từ y sản phẩm loại II là: 30 000y
Tổng lợi nhuận là: 40 000x + 30 000y
Giá trị lớn nhất của L(x; y) = 40 000x + 30 000y đạt tại một trong các điểm (0; 0), (40; 0), (0; 50), (20; 40).
Ta có:
L(0; 0) = 0
L(40; 0) = 1 600 000
L(0; 50) = 1 500 000
L(20; 40) = 2 000 000
Vậy giá trị lớn nhất của L(x; y) là 2 000 000 khi (x; y) = (20; 40).
Vậy cần sản xuất 20kg sản phẩm loại I và 40kg sản phẩm loại II để có mức lợi nhuận lớn nhất
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
30 Đánh giá
50%
40%
0%
0%
0%