Giải SBT Toán 10 Bài 2. Định lí côsin và định lí sin có đáp án
31 người thi tuần này 4.6 1.2 K lượt thi 13 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 1. Không gian mẫu và biến cố (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 4. Ba đường conic trong mặt phẳng tọa độ (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Đường tròn trong mặt phẳng tọa độ (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 2. Đường thẳng trong mặt phẳng tọa độ (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 1. Tọa độ của vectơ (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Lời giải
a) Áp dụng định lí côsin ta có:
BC2 = AB2 + AC2 – 2.AB.AC.cos\(\widehat {\rm{A}}\)
BC2 = 102 + 92 – 2.10.9.cos65°
BC 2 ≈ 104,929
BC ≈ 10,24 (cm).
Vậy BC ≈ 10,24 (cm).
b) \(\widehat {\rm{P}}\)= 180° – 112° – 34° = 34°.
Ta có: \(\widehat {\rm{P}}\) = \(\widehat {\rm{M}}\) ⇒ tam giác MNP cân tại N ⇒ MN = NP = 22 (cm)
Áp dụng định lí sin ta có: \(\frac{{{\rm{MP}}}}{{{\rm{sinN}}}}{\rm{ = }}\frac{{{\rm{MN}}}}{{{\rm{sinP}}}}{\rm{ = }}\frac{{{\rm{NP}}}}{{{\rm{sinM}}}} = \frac{{22}}{{\sin 34^\circ }}\).
⇒ MP = \(\frac{{22}}{{\sin 34^\circ }}\).sin112° ≈ 36,48 (cm)
Vậy MP ≈ 36,48 cm, MN = 22 cm.
Lời giải
Lời giải
Ta có: \(\widehat {\rm{A}}\)= 180° – 80° – 40° = 60°.
Áp dụng định lí sin ta có:
\(\frac{{\rm{a}}}{{{\rm{sinA}}}}{\rm{ = }}\frac{{\rm{b}}}{{{\rm{sinB}}}}{\rm{ = }}\frac{{\rm{c}}}{{{\rm{sinC}}}}\) = \(\frac{{75}}{{\sin 60^\circ }}\)
⇒ b = \(\frac{{75}}{{\sin 60^\circ }}\). sin80° ≈ 85,29 (cm);
⇒ c = \(\frac{{75}}{{\sin 60^\circ }}\). sin40° ≈ 55,67 (cm).
Vậy AC ≈ 85,29 cm; AB ≈ 55,67 cm và \(\widehat {\rm{A}}\)= 60°.
Lời giải
Lời giải
R = \(\frac{{\rm{a}}}{{{\rm{2sinA}}}}\) = \(\frac{{75}}{{2.\sin 60^\circ }}\) = 25\(\sqrt 3 \) (cm).
Vậy R = 25\(\sqrt 3 \) cm.
Lời giải
Lời giải
Do b là cạnh lớn nhất nên B là góc lớn nhất.
Theo định lí côsin: b2 = a2 + c2 – 2accosB
⇒ cosB = \[\frac{{{{\rm{a}}^2} + {{\rm{c}}^2} - {{\rm{b}}^2}}}{{2{\rm{ac}}}}\] = \(\frac{{{8^2} + {6^2} - {{12}^2}}}{{2.8.6}}\)
⇒ cosB = \(\frac{{ - 11}}{{24}}\).
⇒ \(\widehat {\rm{B}}\) = 117°16’46’’.
Vậy góc lớn nhất của tam giác ABC là \(\widehat {\rm{B}}\) = 117°16’46’’.
Lời giải
Lời giải
Áp dụng định lí côsin:
PQ2 = OP2 + OQ2 – 2.OP.OQ.cos\(\widehat {\rm{O}}\)
PQ2 = 14002 + 6002 – 2.1400.600.cos76°
PQ = \(\sqrt {{{1400}^2} + {{600}^2}--{\rm{ }}2.1400.600.{\rm{cos}}76^\circ } \)
PQ ≈ 1383,32 (m).
Vậy khoảng cách giữa hai điểm PQ là PQ ≈ 1383,32 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

