Giải SGK Toán 8 KNTT Luyện tập chung trang 121 có đáp án
45 người thi tuần này 4.6 388 lượt thi 5 câu hỏi
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Tính thể tích của hình chóp tam giác đều S.ABC, biết diện tích đáy của nó bằng 15,6 cm2, chiều cao bằng 10 cm.
Tính thể tích của hình chóp tam giác đều S.ABC, biết diện tích đáy của nó bằng 15,6 cm2, chiều cao bằng 10 cm.
Lời giải
Thể tích của khối chóp tam giác đều S.ABC là (cm3).
Câu 2
Trong các miếng bìa ở Hình 10.32, miếng bìa nào khi gấp và dán lại thì được một hình chóp tam giác đều, miếng nào thì được một hình chóp tứ giác đều.
Trong các miếng bìa ở Hình 10.32, miếng bìa nào khi gấp và dán lại thì được một hình chóp tam giác đều, miếng nào thì được một hình chóp tứ giác đều.

Lời giải
Miếng bìa 4 gấp và dán lại được hình chóp tam giác đều.
Miếng bìa 2 gấp và dán lại được hình chóp tứ giác đều.
Miếng bìa 1 và miếng bìa 3 không không có đáy là hình vuông hay hình tam giác nên không thỏa mãn.
Câu 3
Tính thể tích hình chóp tam giác đều A.BCD có độ dài cạnh đáy bằng 10 cm, chiều cao bằng 12 cm (H.10.33), biết
.
Tính thể tích hình chóp tam giác đều A.BCD có độ dài cạnh đáy bằng 10 cm, chiều cao bằng 12 cm (H.10.33), biết

.
Lời giải
Vì I là trung điểm của BC nên BI = IC = 10 : 2 = 5 cm.
Xét tam giác BID vuông tại I, có
ID2 + BI2 = BD2 (định lí Pythagore).
Suy ra ID2 = BD2 – BI2 = 102 – 52 = 75.
Do đó, ID = (cm).
Diện tích tam giác đáy BCD là:
SBCD = . ID . BC ≈ . 8,66 . 10 = 43,3 (cm2).
Thể tích hình chóp tam giác đều A.BCD là:
V = . S . h ≈ . 43,3 . 12 = 173,2 (cm3).
Câu 4
Người ta làm mô hình một kim tự tháp ở cổng vào của bảo tàng Louvre. Mô hình có dạng hình chóp tứ giác đều, chiều cao 21 m, độ dài cạnh đáy là 34 m.
a) Tính thể tích hình chóp.
Người ta làm mô hình một kim tự tháp ở cổng vào của bảo tàng Louvre. Mô hình có dạng hình chóp tứ giác đều, chiều cao 21 m, độ dài cạnh đáy là 34 m.
a) Tính thể tích hình chóp.
Lời giải
a) Thể tích hình chóp tứ giác đều là:
V = . Sđáy . h = . 342 . 21 = 8 092 (cm3).
Câu 5
b) Tính tổng diện tích các tấm kính để phủ kín bốn mặt bên hình chóp này, biết rằng người ta đo được độ dài cạnh bên của hình chóp là 31,92 m.
b) Tính tổng diện tích các tấm kính để phủ kín bốn mặt bên hình chóp này, biết rằng người ta đo được độ dài cạnh bên của hình chóp là 31,92 m.
Lời giải
b) Mô tả hình chóp như hình dưới đây.

Ta có SI = 21 m, EF = FG = GH = HE = 34 m, SE = SF = SG = SH = 31,92 m.
SK là một trung đoạn của hình chóp.
K là trung điểm của GH nên GK = KH = m.
Áp dụng định lí Pythagore cho tam giác SKH vuông tại H, ta có:
KH2 + SK2 = SH2
Hay 172 + SK2 = (31,92)2
Suy ra SK2 = (31,92)2 – 172 ≈ 729,89. Do đó, SK ≈ 27,02 m.
Diện tích xung quanh của hình chóp tứ giác đều hay tổng diện tích các tấm kính để phủ kín bốn mặt bên hình chóp này là:
Sxq = p . d ≈ = 1 837,36 (m2).
78 Đánh giá
50%
40%
0%
0%
0%