Ôn tập chương 3

  • 9704 lượt xem

  • 22 câu hỏi



Danh sách câu hỏi

Câu 1:

Thế nào là hai phương trình tương đương?

Xem đáp án »

Hai phương trình tương đương là hai phương trình có cùng một tập nghiệm.


Câu 2:

Nhân hai vế của một phương trình với cùng một biểu thức chứa ẩn thì có thể không được phương trình tương đương. Em hãy cho một ví dụ.

Xem đáp án »

Ví dụ: phương trình (1) x - 1 = 3 có tập nghiệm S1 = {4}.

Nhân hai vế của phương trình (1) với x, ta được phương trình:

(x - 1)x = 3x (2)

⇔ (x - 1)x - 3x = 0

⇔ x(x - 4) = 0

Phương trình (2) có tập nghiệm là S2 = {0, 4}.

Vì S1 ≠ S2 nên hai phương trình (1) và (2) không tương đương.


Câu 4:

Một phương trình bậc nhất một ẩn có mấy nghiệm? Đánh dấu "x" vào ô vuông ứng với câu trả lời đúng:

Giải bài 4 trang 32 SGK Toán 8 Tập 2 | Giải toán lớp 8

Xem đáp án »

Ô vuông thứ 2: Một phương trình bậc nhất một ẩn luôn có một nghiệm duy nhất.

(Bạn cần lưu ý vì đây là phương trình bậc nhất một ẩn nên a ≠ 0, do đó phương trình luôn có một nghiệm duy nhất. Không có trường hợp a = 0 nhé.)


Câu 5:

Khi giải phương trình chứa ẩn ở mẫu, ta phải chú ý điều gì?

Xem đáp án »

Khi giải phương trình chứa ẩn ở mẫu, ta phải chú ý đến điều kiện xác định của phương trình.


Câu 6:

Hãy nêu các bước giải bài toán bằng cách lập phương trình.

Xem đáp án »

Bước 1. Lập phương trình.

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số;

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không thỏa mãn, rồi kết luận.


Câu 7:

Giải phương trình: 3 – 4x(25 – 2x) = 8x2 + x – 300

Xem đáp án »

3 – 4x(25 – 2x) = 8x2 + x – 300

⇔ 3 – 4x.25 + 4x.2x = 8x2 + x – 300

⇔ 3 – 100x + 8x2 = 8x2 + x – 300

⇔ -100x – x = -300 – 3

⇔ -101x = -303

⇔ x = 3.

Vậy phương trình có tập nghiệm S = {3}.


Câu 8:

Giải phương trình: 21 - 3x5 - 2 + 3x10 = 7 - 32x + 14

Xem đáp án »

Giải bài 50 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ 8(1 – 3x) – 2(2 + 3x) = 140 – 15(2x + 1)

⇔ 8 – 24x – 4 – 6x = 140 – 30x – 15

⇔ 4 – 30x = 125 – 30x

⇔ 0x = 121 (vô lý)

Vậy phương trình vô nghiệm.


Câu 9:

Giải phương trình: 5x + 26 - 8x - 13 = 4x + 25 - 5

Xem đáp án »

Giải bài 50 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ 5(5x + 2) – 10(8x – 1) = 6(4x + 2) – 150

⇔ 25x + 10 – 80x + 10 = 24x + 12 – 150

⇔ 20 – 55x = 24x – 138

⇔ -55x – 24x = -138 – 20

⇔ -79x = -158

⇔ x = 2.

Vậy phương trình có tập nghiệm S = {2}.


Câu 10:

Giải phương trình: 3x + 22 - 3x + 16 = 2x + 53

Xem đáp án »

Giải bài 50 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ 3(3x + 2) – (3x + 1) = 12x + 10

⇔ 9x + 6 – 3x – 1 = 12x + 10

⇔ 6x + 5 = 12x + 10

⇔ 6x – 12x = 10 – 5

⇔ -6x = 5

⇔ Giải bài 50 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy phương trình có tập nghiệm Giải bài 50 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8


Câu 11:

Giải phương trình sau bằng cách đưa về phương trình tích: (2x + 1)(3x – 2) = (5x – 8)(2x + 1)

Xem đáp án »

(2x + 1)(3x – 2) = (5x – 8)(2x + 1)

⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0

⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0

⇔ (2x + 1).(3x – 2 – 5x + 8) = 0

⇔ (2x + 1)(6 – 2x) = 0

⇔ 2x + 1 = 0 hoặc 6 – 2x = 0

   + 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = -1/2.

   + 6 – 2x = 0 ⇔ 6 = 2x ⇔ x = 3.

Vậy phương trình có tập nghiệm Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8


Câu 12:

Giải phương trình sau bằng cách đưa về phương trình tích: 4x2 – 1 = (2x + 1)(3x – 5)

Xem đáp án »

4x2 – 1 = (2x + 1)(3x – 5)

⇔ 4x2 – 1 – (2x + 1)(3x – 5) = 0

⇔ (2x – 1)(2x + 1) – (2x + 1)(3x – 5) = 0

⇔ (2x + 1)[(2x – 1) – (3x – 5)] = 0

⇔ (2x + 1)(2x – 1 – 3x + 5) = 0

⇔ (2x + 1)(4 – x) = 0

⇔ 2x + 1= 0 hoặc 4 – x = 0

   + 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = -1/2.

   + 4 – x = 0 ⇔ x = 4.

Vậy phương trình có tập nghiệm Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8


Câu 13:

Giải phương trình sau bằng cách đưa về phương trình tích: (x + 1)2 = 4(x2 – 2x + 1)

Xem đáp án »

Cách 1:

(x + 1)2 = 4(x2 – 2x + 1)

⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0

⇔ (x + 1)2 - 22. (x -1)2 = 0

⇔ (x + 1)2 – [ 2(x – 1)]2 =0

⇔ [(x+ 1) + 2( x- 1)]. [(x+ 1) - 2( x- 1)]= 0

⇔ ( x+1+ 2x -2) . (x+1 – 2x + 2) =0

⇔ ( 3x- 1).( 3- x) = 0

⇔ 3x – 1 = 0 hoặc 3 – x= 0

+) 3x – 1 = 0 ⇔ 3x = 1 ⇔ x = Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

+) 3 – x = 0 ⇔ x= 3

Vậy tập nghiệm của phương trình đã cho là:

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

 

* Cách 2: Ta có:

(x + 1)2 = 4(x2 – 2x + 1)

⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0

⇔ x2 + 2x +1- 4x2 + 8x – 4 = 0

⇔ - 3x2 + 10x – 3 = 0

⇔ (- 3x2 + 9x) + (x – 3) = 0

⇔ -3x (x – 3)+ ( x- 3) = 0

⇔ ( x- 3). ( - 3x + 1) = 0

⇔ x - 3 = 0 hoặc -3x + 1= 0

+) x - 3 = 0 x = 3

+) - 3x + 1 = 0 - 3x = - 1 ⇔ x = Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy tập nghiệm của phương trình đã cho là:

Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8


Câu 14:

Giải phương trình sau bằng cách đưa về phương trình tích: 2x3 + 5x2 – 3x = 0

Xem đáp án »

2x3 + 5x2 – 3x = 0

⇔ x(2x2 + 5x – 3) = 0

⇔ x.(2x2 + 6x – x – 3) = 0

⇔ x. [2x(x + 3) – (x + 3)] = 0

⇔ x.(2x – 1)(x + 3) = 0

⇔ x = 0 hoặc 2x – 1 = 0 hoặc x + 3 = 0

   + 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

   + x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8


Câu 15:

Giải phương trình: 12x - 3 - 3x2x - 3 = 5x

Xem đáp án »

Điều kiện xác định: x ≠ 0 và x ≠ 3/2.

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy phương trình có tập nghiệm Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8


Câu 16:

Giải phương trình: x + 2x - 2 - 1x = 2xx - 2

Xem đáp án »

Điều kiện xác định: x ≠ 0; x ≠ 2.

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ x(x + 2) – (x – 2) = 2

⇔ x2 + 2x – x + 2 = 2

⇔ x2 + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0.

   + x = 0 không thỏa mãn điều kiện xác định.

   + x + 1 = 0 ⇔ x = -1 (thỏa mãn điều kiện xác định).

Vậy phương trình có tập nghiệm S = {-1}.


Câu 17:

Giải phương trình: x + 1x - 2 + x - 1x + 2 = 2x2 + 2x2 - 4

Xem đáp án »

Điều kiện xác định: x ≠ ±2.

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ (x + 1)(x + 2) + (x – 1)(x – 2) = 2(x2 + 2)

⇔ x2 + x + 2x + 2 + x2 – x – 2x + 2 = 2x2 + 4

⇔ 2x2 + 4 = 2x2 + 4

⇔ 0x = 0.

Vậy phương trình nghiệm đúng với mọi x ≠ ±2.


Câu 18:

Giải phương trình: 2x + 33x + 82 - 7x + 1 = x - 53x + 82 - 7x + 1

Xem đáp án »

Điều kiện xác định: x ≠ 2/7.

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Suy ra: 10 – 4x = 0 ⇔ x = 5/2 (thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm là Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8


Câu 20:

Một canô xuôi dòng từ bến A đến bến B mất 4 giờ và ngược dòng từ bến B về bến A mất 5 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2 km/h.

Xem đáp án »

Gọi x (km) là khoảng cách giữa hai bến A và B, với x > 0.

Giải bài 54 trang 34 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vì vận tốc xuôi dòng lớn hơn vận tốc ngược dòng chính bằng 2 lần vận tốc dòng nước nên ta có phương trình:

Giải bài 54 trang 34 SGK Toán 8 Tập 2 | Giải toán lớp 8

x = 80 (thỏa mãn điều kiện).

Vậy khoảng cách giữa hai bến A và B là 80km.

(Giải thích tại sao hiệu vận tốc xuôi dòng và ngược dòng bằng 2 lần vận tốc dòng nước:

Nếu gọi vận tốc canô là v (km/h), vận tốc dòng nước là a (km/h), ta có:

Khi xuôi dòng: vận tốc canô = v + a

Khi ngược dòng: vận tốc canô = v - a

Hiệu vận tốc = v + a - (v - a) = 2a = 2 vận tốc dòng nước.)


Câu 21:

Biết rằng 200g một dung dịch chứa 50g muối. Hỏi phải pha thêm bao nhiêu gam nước vào dung dịch đó để được một dung dịch chứa 20% muối?

Xem đáp án »

Gọi x (g) là khối lượng nước phải pha thêm, với x > 0.

Khối lượng dung dịch mới: 200 + x (g)

Ta có: nồng độ dung dịch = số g muối / số g dung dịch.

Vì khối lượng muối không đổi nên nồng độ dung dịch sau khi pha thêm nước bằng Giải bài 55 trang 34 SGK Toán 8 Tập 2 | Giải toán lớp 8

Theo đề bài, nồng độ dung dịch mới chứa 20% muối nên ta có phương trình:

Giải bài 55 trang 34 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy phải pha thêm 50g nước để được dung dịch chứa 20% muối.


Câu 22:

Để khuyến khích tiết kiệm điện, giá điện sinh hoạt được tính theo kiểu lũy tiến, nghĩa là nếu người sử dụng càng nhiều điện thì giá mỗi số điện (1kw/h) càng tăng lên theo các mức như sau:

Mức thứ nhất: Tính cho 100 số điện đầu tiên;

Mức thứ hai: Tính cho số điện thứ 101 đến 150, mỗi số đắt hơn 150 đồng so với mức thứ nhất;

Mức thứ ba: Tính cho số điện thứ 151 đến 200, mỗi số đắt hơn 200 đồng so với mức thứ hai;

v.v...

Ngoài ra người sử dụng còn phải trả thêm 10% thuế giá trị gia tăng (thuế VAT).

Tháng vừa qua, nhà Cường dùng hết 165 số điện và phải trả 95700 đồng. Hỏi mỗi số điện ở mức thứ nhất giá là bao nhiêu?

Xem đáp án »

Gọi x (đồng) là giá mỗi số điện ở mức thứ nhất (x > 0).

⇒ Giá mỗi số điện ở mức 2 là: x + 150 (đồng)

⇒ Giá mỗi số điện ở mức 3 là: x + 150 + 200 = x + 350 (đồng)

Nhà Cường dùng hết 165 số điện = 100 + 50 + 15.

Như vậy nhà Cường phải đóng cho 100 số điện ở mức 1, 50 số điện ở mức 2 và 15 số điện ở mức 3.

Giá tiền 100 số điện mức đầu tiên là: 100.x (đồng)

Giá tiền 50 số điện mức thứ hai là: 50.(x + 150) (đồng)

Giá tiền 15 số điện còn lại mức thứ ba là: 15.(x + 350) (đồng).

⇒ Số tiền điện (chưa tính VAT) của nhà Cường bằng:

   100.x + 50.(x + 150) + 15.(x + 350)

= 100x + 50x + 50.150 +15x +15.350

= 165x + 12750.

Thuế VAT nhà Cường phải trả là: (165x + 12750).10%

Giải bài 56 trang 34 SGK Toán 8 Tập 2 | Giải toán lớp 8

Tổng số tiền điện nhà Cường phải đóng (tiền gốc + thuế) bằng:

   165x + 12750 + 0,1.(165x + 12750) = 1,1.(165x + 12750).

Thực tế nhà Cường hết 95700 đồng nên ta có phương trình:

   1,1(165x + 12750) = 95700

   ⇔ 165x + 12750 = 87000

   ⇔ 165x = 74250

   ⇔ x = 450 (đồng) (thỏa mãn điều kiện).

Vậy mỗi số điện ở mức giá đầu tiên là 450 đồng.


Bài thi liên quan

Các bài thi hot trong chương

Đánh giá

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận