5 câu Trắc nghiệm Toán 10 Kết nối tri thức Ba đường conic (Vận dụng) có đáp án
24 người thi tuần này 4.6 2.6 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của (P) có dạng: y2 = 2px (p > 0)
Vì (P) có đường chuẩn ∆ : x + 4 = 0 hay x = −4 ⇒ ⇔ p = 8
Do đó phương trình chính tắc của (P) là: y2 = 16x
Gọi M(x0; y0). Vì M thuộc (P) nên ta có:
d(M; ∆) = MF = 5
⇔
⇔
⇔
⇔
Với x0 = – 9 ta có: y02 = 16 .(– 9) = – 144 (vô lí)
Với x0 = 1 ta có: y02 = 16.1 = 16 ⇔
Vậy M (1; 4) hoặc M(1; – 4).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Phương trình chính tắc của (H) có dạng: trong đó a, b > 0
Vì (H) có một tiêu điểm là F2(5; 0) nên ta có : c = 5 ⇒ a2 + b2 = c2 = 25
⇔ a2 = 25 – b2
Vì (H) đi qua điểm M(3; −4) nên ta có: ⇔ (1)
Đặt t = b2 (t > 0) ⇒ a2 = 25 – t . Thay vào (1) ta được: (t ≠ 25)
⇔ 18t – 16(25 – t) = (25 – t)t
⇔ t2 + 9t – 400 = 0 ⇒
Với điều kiện t > 0 thì t = - 25 không thoả mãn
Với t = 16 thì b2 = 16 và a2 = 25 – 16 = 9
Vậy phương trình đường thẳng hypebol (H) là: .
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì điểm C thuộc (P) nên C
Ta có: ;
Theo giả thiết tam giác ABC vuông tại A khi và chỉ khi = 0
⇔
⇔
⇔
Với c = 8 thì C(16; 8)
Với c = thì C
Vậy điểm C cần tìm có toạ độ là: C(16; 8) hoặc C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có: ⇒ a2 = 100 và b2 = 36 . Do đó: c =
Khi đó, tiêu điểm F1 (−8; 0)
⇒ Đường thẳng d // Oy và đi qua F1 (−8; 0) là x = −8
Giao điểm của d và (E) là nghiệm của hệ phương trình:
⇔ ⇒
Vậy toạ độ hai điểm M và N lần lượt là: M và N
⇒ MN = .
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có: 9x2 + 16y2 = 144 ⇔ . Khi đó: a = 4; b = 3; c = .
⇒ F1 (−;0); F2 (; 0); F1F2 = 2c = 2; MF1 + MF2 = 8
Áp dụng định lí cosin trong tam giác MF1F2 ta có:
F1F22 = MF12 + MF22 − 2MF1. MF2. cos
⇔ 28 = MF12 + MF22 − 2MF1. MF2. cos60º
⇔ 28 = MF12 + MF22 − MF1. MF2
⇔ MF12 + MF22 + 2MF1. MF2 − 3MF1. MF2 = 28
⇔ (MF1 + MF2)2 − 3MF1. MF2 = 28
⇔ 64 − 3MF1. MF2 = 28
⇔ MF1. MF2 = 12.