Bài 1: Khái niệm về mặt tròn xoay

  • 229 lượt xem

  • 19 câu hỏi



Danh sách câu hỏi

Câu 1:

Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng αTính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi r là bán kính của đường tròn đáy.

Ta có OA = r = l.cosα (với O là tâm của đường tròn đáy và A là một điểm trên đường tròn đó).

Ta suy ra: Sxq=πrl=πl2cosα

Khối nón có chiều cao h = DO = lsinα. Do đó thể tích V của khối nón được tính theo công thức

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy :

Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 2:

Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng αGọi I là một điểm trên đường cao DO của hình nón sao cho DIDO = k (0 < k < 1) . Tính diện tích thiết diện qua I và vuông góc với trục của hình nón.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thiết diện qua I và vuông góc với trục hình nón là một hình tròn bán kính r’

với Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi s là diện tích của thiết diện và S là diện tích của đáy hình tròn ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

trong đó S = πr2=πl2cos2α

Vậy diện tích của thiết diện đi qua điểm I và vuông góc với trục hình nón là: s = k2s=k2πl2cos2α


Câu 3:

Một hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân có cạnh bằng a. Tính diện tích toàn phần và thể tích hình nón đó.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thiết diện qua trục của hình nón là tam giác vuông cân cạnh a nên hình nón có đường sinh l = a,

có bán kính đáy Giải sách bài tập Toán 12 | Giải sbt Toán 12

và có chiều cao Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi Sxq là diện tích xung quanh của hình nón, ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi S là diện tích đáy của hình nón, ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy diện tích toàn phần của hình nón đã cho là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hình nón có thể tích là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 4:

Một hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân có cạnh bằng a. Một mặt phẳng đi qua đỉnh tạo với mặt phẳng đáy một góc 60°. Tính diện tích thiết diện được tạo nên.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét mặt phẳng (DAM) đi qua đỉnh D tạo với mặt phẳng đáy một góc 600, cắt đường tròn đáy tại hai điểm A và M. Từ tâm O của đường tròn đáy ta vẽ OH AM, do vậy H là trung điểm của đoạn AM. Ta có AM  (DOH) vì AM  OH và AM  DO.

Vậy DHO = 60° và Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi SΔ DAM là diện tích thiết diện cần tìm, ta có: SDAM = AH.DH

Mà Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 5:

Cho S.ABC là hình chóp tam giác đều có các cạnh bên bằng a và có góc giữa các mặt bên và mặt phẳng đáy là α. Hình nón đỉnh S có đường tròn đáy nội tiếp tam giác đều ABC gọi là hình nón nội tiếp hình nón đã cho. Hãy tính diện tích xung quanh của hình nón này theo a và α

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = SB = SC = a và SIO = α. Đặt OI = r, SO = h, ta có AO = 2r và

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó a2=r2tan2α+4r2=r2tan2α+4

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hình nón nội tiếp có đường sinh là :

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích xung quanh của hình nón nội tiếp hình chóp S.ABC là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 6:

Cho hình chóp tứ giác đều S.ABCD có chiều cao SO = h và góc SAB = α (α > 45°). Tính diện tích xung quanh của hình nón đỉnh S và có đường tròn đáy ngoại tiếp hình vuông ABCD của hình chóp.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi r là bán kính đáy của hình nón ta có OA = r, SO = h và SA = SB = SC = SD = l là đường sinh của hình nón.

Gọi I là trung điểm của đoạn AB, ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(2) ⇒ r = 2lcosα

(1) ⇒ l2=h2+2l2cos2α

⇒ h2=l2(1 − 2cos2α)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 7:

Chứng minh rằng trong một khối nón tròn xoay, góc ở đỉnh là góc lớn nhất trong số các góc được tạo nên bởi hai đường sinh của khối nón đó.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét hai đường sinh SA , SB tùy ý của hình nón. Vẽ đường kính AC của đường tròn đáy. Ta có góc ASC là góc ở đỉnh của hình nón. Hai tam giác ASC và ASB có hai cặp cạnh bằng nhau vì chúng cùng là đường sinh của hình nón.

Ta có cạnh AC AB nên ASC  ASB. Đó là điều cần chứng minh.


Câu 8:

Cho khối nón có bán kính đáy r = 12 cm và có góc ở đỉnh là α = 120°. Hãy tính diện tích của thiết diện đi qua hai đường sinh vuông góc với nhau.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Theo giả thiết ta có góc ở đỉnh của hình nón là ASB = α = 120°. Gọi O là tâm của đường tròn đáy. Ta có: ASO = 60°

và Giải sách bài tập Toán 12 | Giải sbt Toán 12

với l là độ dài đường sinh của hình nón.

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Khi có hai đường sinh vuông góc với nhau ta có tam giác vuông có diện tích là l2/2. Do đó, diện tích của thiết diện là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 9:

Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng (P) sao cho góc ABM = BMH. Chứng minh rằng điểm M luôn luôn nằm trên một mặt trụ xoay có trục là AB.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sử ta có điểm M thuộc mặt phẳng (P) thỏa mãn các điều kiện của giả thiết đã cho. Gọi I là hình chiếu vuông góc của M trên AB. Hai tam giác vuông BIM và MHB bằng nhau vì có cạnh huyền chung và một cặp góc nhọn bằng nhau. Do đó MI = BH không đổi. Vậy điểm M luôn luôn nằm trên mặt trụ trục AB và có bán kính bằng BH.


Câu 10:

Cho mặt trụ xoay(J) và một điểm S cố định nằm ngoài (J) . Một đường thẳng d thay đổi luôn luôn đi qua S cắt (J) tại A và B. Chứng minh rằng trung điểm I của đoạn thẳng AB luôn luôn nằm trên một mặt trụ xác định.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi (P) là mặt phẳng đi qua S và vuông góc với trục của mặt trụ (J). Mặt phẳng (P) cắt (J) theo một đường tròn tâm O. Ta hãy xét một vị trí của đường thẳng d. Gọi A, B là giao điểm của d với (J) và I là trung điểm của đoạn AB. Chiếu A, B, I theo phương vuông góc với mặt phẳng (P) ta được các điểm theo thứ tự là A’ , B’ , I’ thẳng hàng với S, trong đó A’, B’ nằm trên đường tròn tâm O trong mặt phẳng (P) và I’ là trung điểm của đoạn A’B’. Do đó điểm I’ luôn luôn nằm trên đường tròn đường kính SO trong mặt phẳng (P) và đường thẳng II’ vuông góc với (P). Ta suy ra đường thẳng II’ nằm trên mặt trụ (J′) chứa đường tròn đường kính SO nằm trong (P) và có trục song song với trục của mặt trụ (J) .

Tất nhiên, điểm I chỉ nằm trong phần mặt trụ (J′) thuộc miền trong của mặt trụ (J)


Câu 11:

Một khối trụ có bán kính đáy bằng r và chiều cao bằng r3Gọi A và B là hai điểm trên hai đường tròn đáy sao cho góc được tạo thành giữa đường thẳng AB và trục của khối trụ bằng 30°Tính diện tích của thiết diện qua AB và song song với trục của khối trụ.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ A và B dựng các đường sinh AA’ và BB’ ta có thiết diện qua AB và song song với trục là hình chữ nhật AA’BB’. Góc giữa AB và trục chính là góc ABB′ . Do đó ABB′ = 30°. Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó diện tích tứ giác AA’BB’ là SAA'BB' = AB′. BB′ = r.r3r23


Câu 13:

Một khối trụ có bán kính đáy bằng r và chiều cao bằng r3Gọi A và B là hai điểm trên hai đường tròn đáy sao cho góc được tạo thành giữa đường thẳng AB và trục của khối trụ bằng 30°Xác định và tính độ dài đoạn vuông góc chung của AB và trục của khối trụ.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt phẳng (ABB’) chứa AB và song song với trục OO’ của hình trụ. Gọi H là trung điểm của AB’. Ta có OH (ABB′). Đường thẳng qua H song song với OO’ cắt AB tại I. Dựng IK // HO cắt OO’ tại K. Ta chứng minh được IK là đoạn vuông góc chung của AB và OO’.

Ta có: IK = HO = Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 14:

Một hình trụ có các đáy là hai hình tròn tâm O và O’ bán kính r và có đường cao h = r2. Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O’ sao cho OA vuông góc với O’B. Chứng minh rằng các mặt bên của tứ diện OABO’ là những tam giác vuông. Tính thể tích của tứ diện này.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì trục OO’ vuông góc với các đáy nên OO′  OA; OO′ O′B. Vậy các tam giác AOO’ và BO’O vuông tại O và O’.

Theo giả thiết ta có AO  O′B mà AO  OO′ ⇒ AO  (OO′B). Do đó, AO  OB nên tam giác AOB vuông tại O. Tương tự, ta chứng minh được tam giác AO’B vuông tại O’. Thể tích hình chóp OABO’ là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 16:

Một hình trụ có các đáy là hai hình tròn tâm O và O’ bán kính r và có đường cao h = r2. Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O’ sao cho OA vuông góc với O’B. Chứng minh rằng (α) tiếp xúc với mặt trụ trục OO’ có bán kính bằng r22 dọc theo một đường sinh.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đường tròn tâm O có bán kính bằng r22 tiếp xúc với AB’ tại H là trung điểm của AB’. Do đó mặt phẳng (α) song song với trục OO’ chứa tiếp tuyến của đường tròn đáy, nên (α) tiếp xúc với mặt trụ dọc theo một đường sinh, với mặt trụ có trục OO’ và có bán kính đáy bằng r22


Câu 18:

Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm. Một đoạn thẳng có chiều dài 100 cm và có hai đầu mút nằm trên hai đường tròn đáy. Tính khoảng cách từ đoạn thẳng đó đến trục hình trụ.

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử đoạn thẳng AB có điểm mút A nằm trên đường tròn đáy tâm O’ . Theo giả thiết ta có: AB = 100 cm. Giả sử IK là đoạn vuông góc chung của trục OO’ và đoạn AB với I thuộc OO’ và K thuộc AB. Chiếu vuông góc đoạn AB xuống mặt phẳng đáy chứa đường tròn tâm O’ , ta có A’ , H , B lần lượt là hình chiếu của A, K, B.

Vì KI OO′ nên IK // mp(O’BA’) , do đó O’H // IK và O’H = IK.

Ta suy ra O′H  AB và O′H  AA′. Vậy O′H  A′B

Xét tam giác vuông AA’B ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12


Câu 19:

Hình chóp tam giác đều S.ABC có SA = SB = SC = a và có góc giữa mặt bên và mặt phẳng đáy bằng α. Tính diện tích xung quanh của hình trụ có đường tròn đáy là đường tròn nội tiếp tam giác đáy của hình chóp và có chiều cao bằng chiều cao của hình chóp. Các mặt bên SAB , SBC , SCA cắt hình trụ theo những giao tuyến như thế nào?

Xem đáp án »

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Theo giả thiết ta có tam giác đáy ABC là tam giác đều.

Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = a. Đặt OI = r , SO = h , ta có AO = 2r và SIA = α.

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy a2=r2tan2α+4r2=r2tan2α+4

Ta suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi Sxq là diện tích xung quanh của hình trụ ta có công thức Sxq = 2πrl trong đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Các mặt bên SAB, SBC , SCA là những phần của ba mặt phẳng không song song với trục và cũng không vuông góc với trục nên chúng cắt mặt phẳng xung quanh của hình trụ theo những cung elip. Các cung này có hình chiếu vuông góc trên mặt phẳng (ABC) tạo nên đường tròn đáy của hình trụ.


Các bài thi hot trong chương

Đánh giá

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận