5 câu Trắc nghiệm Toán 10 Kết nối tri thức Hệ thức lượng trong tam giác (Vận dụng ) có đáp án
28 người thi tuần này 4.6 2.7 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài 23. Quy tắc đếm (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài tập cuối chương 7 (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài 22. Ba đường conic (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài 21. Đường tròn trong mặt phẳng tọa độ (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài 20. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài 19. Phương trình đường thẳng (Đúng sai - Trả lời ngắn) có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Danh sách câu hỏi:
Câu 1
A. 61 hải lí;
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Sau 2h, tàu tới C đi được đoạn đường b = 15.2 = 30 ( hải lí )
Sau 2h, tàu tới B đi được đoạn đường c = 15.2 = 40 ( hải lí )
Dựa vào hình vẽ, sau 2h, tàu B và tàu C tạo với điểm xuất phát một tam giác ABC có
= 60°, b = 30, c = 40 và a = BC.
Áp dụng định lí côsin ta có:
a2 = b2 + c2 – 2bccosA
a2 = 302 + 402 – 2.30.40.cos60°
a2 = 1300
a ≈ 36 ( hải lí ).
Vậy đáp án đúng là B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Gọi điểm H là chân tòa nhà. Điểm D là điểm tương ứng trên tòa nhà ngang bằng với vị trí quan sát A. Như vậy = 90°.
Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Như vậy = 40° và = 50°.
Xét tam giác ABD có: = 180 – – = 180° – 90° – 50° = 40° = .
Xét tam giác ABC có:
= 50° – 40° = 10°.
Áp dụng định lí sin cho tam giác ABC:
⇒ ⇒ AC ≈ 18,5m
Áp dụng định lí sin cho tam giác ADC:
⇒ CD ≈ 11,9m
Chiều cao tòa nhà tương ứng với đoạn CH.
CH = CD + DH = 11,9 + 7 = 18,9 ≈ 19m.
Vậy đáp án đúng là B.
Câu 3
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
b.( b2 – a2 ) = c.( a2 – c2 )
⟺ b3 – a2b – a2c + c3 = 0
⟺ b3 + c3 – ( a2b + a2c ) = 0
⟺ ( b + c )( b2 – bc + c2 ) – a2( b + c ) = 0
⟺ ( b + c ) ( b2 + c2 – a2 – bc ) = 0
b và c là cạnh tam giác nên b + c > 0
⇒ b2 + c2 – a2 – bc = 0 hay a2 = b2 + c2 – bc
Theo định lí côsin
a2 = b2 + c2 – 2bccosA
mà a2 = b2 + c2 – bc ⇒ cosA = ⇒ = 60°.
Vậy đáp án đúng là D.
Câu 4
A. 60°;
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Đặt AB = c, BC = a, AC = b
Theo định lí côsin ta có: a2 = b2 + c2 – 2bccosA
⇒ cosA =
⇒ cosA =
⇒ cosA =
⇒ = 120° hay = 120°.
Tương tự: cosB =
⇒ cosB =
⇒ cosB =
⇒ = 45° hay = 45°
AD là tia phân giác trong của = 60°.
Xét tam giác ABD: = 180°
⇒ = 180° –= 180° – 60° – 45° = 75°
Vậy đáp án C đúng.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Đặt AB = c = 4, AC = b = 2 , BC = a = 6.

Áp dụng định lí côsin cho tam giác ABC:
b2 = a2 + c2 – 2accosB
⇒ cosB =
⇒ cosB =
BC = 6 và MC = 2MB ⇒ MC = 4 và MB = 2.
Áp dụng định lí côsin cho tam giác ABM:
AM2 = AB2 + BM2 – 2.AM.BM.cos
AM2 = 42 + 22 – 2.2.4.
AM =
Vậy đáp án đúng là C.

